Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен термостойкость

    Крашение в массе в другие цвета может быть осуш,ествлено введением термостойких пигментов или органических красителей. Фирма Циммер (ФРГ) получила патент [25] на способ приготовления концентрата красителя в полимере путем механического растирания их смеси с одновременным расплавлением. Концентрат вводят в непрерывном процессе перед формованием волокна. По другому способу [26] в расплав полиэфира вводят смесь красителя с полипропиленом, полиэтиленом, полиэтиленгликолем или трис(нонилфенил)фосфитом. [c.230]


    По сравнению с полиэтиленом полипропилен обладает более высокой прочностью, термостойкостью, стойкостью к окислению и действию агрессивных сред ((табл. 6-21). Выпускается в виде белого порошка и гранулированный пяти марок ПП-1 для переработки литьем под давлением ПП-2 и ПП-4 для переработки методом экструзии, 1ПП-3 и ПП- 5 для прессования. За рубежом полипропилен известен главным образом под названием моплен.  [c.344]

    Полипропилен [—СН(СНз)—СН2—]п — кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120—140 °С), чем полиэтилен. Имеет высокую механическую прочность (см. табл. Х1П.1), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др. [c.365]

    Производство полипропилена. Полипропилен превосходит все известные в настоящее время карбоцепые полимеры по термостойкости —170°С, высокой ударной вязкости, прочности на разрыв по диэлектрической прочности и химической стойкости он аналогичен полиэтилену. [c.326]

    Полипропилен отличается высокой степенью кристалличности (95%) и повышенной, по сравнению с полиэтиленом, температурой плавления (160—1Т0 С). Этим о-пределяются значительные преимуш ества полипропилена перед полиэтиленом более высокие прочность, термостойкость, газо-и паронепроницаемость, стойкость к действию агрессивных сред и растворителей. Он менее подвержен растрескиванию в агрессивных средах, но более чувствителен к термоокислительной деструкции (старению) [12, с. 129—132]. [c.150]

    ТЕРМОСТОЙКОСТЬ полпмеров, их способность сохранять хим. строение при новышении т-ры. Изменение хим. строения полимеров связано е деструкцией и структурированием, происходящими в них одновременно характер превращений определяется соотношением скоростей этих процессов. Количеств, критерий Т.— т-ра, при к-рой начинается интенсивная потеря массы образца или эта потеря достигает определ. доли от его исходной массы, напр, половины (7 о,з). Т. устанавливают методами термогравиметрии и дифференциального термич. анализа. Значения Го,5 для пек-рых полпмеров поливинилхлорид 270 С, полистирол 365 С, полипропилен 380 С, полиэтилен 405 С, политетрафторэтилен 500 С, полиниромеллитимид [c.569]

    Высокая термостойкость в сочетании с химической стойкостью позволяет использовать полипропилен для воздушных фильтров автомобильных двигателей [243]. [c.18]

    Ударопрочность полипропилена, помимо сополимеризации, повышают также добавкой каучуков. Ударопрочные сорта используются в производстве стульев и различных конструкций, несущих нагрузку. Добавки асбеста придают полипропилену термостойкость (до 240—280°С), а стекловолокна— жесткость. В 1966 г. в США было выработано [c.167]


    Полипропилен отличается высокой степенью кристалличности, что обусловливает более высокие по сравнению с полиэтиленом термостойкость и твердость Полипропилен водостоек и превосходит полиэтилен по стойкости к воздействию кислот и щелочей Растворяется при 80 °С только в ароматических и хлорированных углеводородах, образуя малоконцентрированные растворы, поэтому имеет ограниченное применение — только в производстве порошковых красок [c.148]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]

    Большое влияние на термостойкость высокомолекулярных соединений оказывают заместители. По мере увеличения числа заместителей (например, метильных групп) в цепи энергия связи С—С уменьшается. Так, полиэтилен является более термостойким материалом по сравнению с полипропиленом и поли-изобутиленом [c.59]

    Большое внимание уделяется разработке огнестойкой изоляции из поливинилхлорида с пониженным дымовыделением при горении. Такими свойствами частично обладает изоляция на основе поливинилхлорида, сшитого радиационным облучением. При температуре эксплуатации низковольтных кабелей выше 70 °С более подходящим материалом для изоляции считают сшитый полиэтилен низкой плотности, работающий при 75 °С во влажных и при 90°С — в сухих условиях, а иногда термостойкий (до 200°С) сплав полиэтилена с полипропиленом. [c.103]

    Более термостойки полиэтилен низкого давления (НД) и особенно полипропилен, но поскольку производство их связано с применением катализаторов (ИСЦ, триэтилалюминий), они значительно менее чисты, чем полиэтилен ВД (табл. 41) [554]. В частности, полиэтилен НД сильно загрязняет кислые растворы алюминием [1362]. [c.334]

    Полипропилен Поливинилхлорид термостойкий Титан ВТ 1 [c.60]

    Фаолит, полипропилен, поливинилхлорид термостойкий [c.61]

    Из приведенных данных следует, что полимеры окиси этилена и окиси пропилена менее термостойки по сравнению с полиэтиленом и полипропиленом. [c.60]

    Из приведенных данных следует, что полимеры окиси этилена и окиси пропилена менее термостойки по сравнению с полиэтиленом и полипропиленом. В общем случае более термостойкими являются менее разветвленные, и в особенности стереорегулярные полимеры. [c.46]

    Полипропиленовое волокно устойчиво к воздействию фосфорных кислот и характеризуется высокой гидрофобностью. Полипропилен имеет необходимую механическую прочность на разрыв и истирание, эластичен и стоек к многократным изгибам. Наличие волокон, расположенных перпендикулярно к поверхности, обусловливает высокое сопротивление сжатию при больших перепадах давления. Полипропилен является одним из самых легких полимеров его плотность 900—920 кг/м . Серьезным недостатком материала является невысокая термостойкость температура размягчения 140, а плавления 180 °С. В связи с этим область применения полипропилена ограничивают 100 °С. Стоимость тканей из полипропилена приближается к стоимости хлопчатобумажных тканей. [c.184]


    Важным преимуществом рассмотренного метода введения в полимер модифицирующих добавок является то обстоятельство, что весь процесс можно провести при низких температурах. Для достижения равномерного распределения добавки в объеме полимера обычно ее вводят в расплав, из которого в дальнейшем формуется изделие. Следовательно, добавка, вводимая в такие полимеры как полиамиды, полиэфиры, полипропилен, должна быть в достаточной мере термостойкой, так как перечисленные полимеры формуются из расплава, имеющего температуру 250—300 °С и, следовательно, критерий термостабильности значительно сокращает ассортимент добавок, вводимых общепринятым способом. [c.163]

    Аналогичными свойствами обладает другая термопластичная пластмасса — полиэтилен, который все более широко применяется в промышленности. Термостойкость полиэтилена также не превышает 60° С. Весьма перспективным для химического и нефтехимического машиностроения является термопласт полипропилен, который имеет термостойкость до 150° С. Детали из полипропилена соединяются склейкой и сваркой. [c.25]

    Полипропилен и полиизобутилен. Поскольку в макроцепи полипропилена каждый второй атом углерода третичный, а у полиизобутилена - четвертичный, то прочность углерод-углеродных связей постепенно снижается от полиэтилена к полипропилену и полиизобутилену. Это отчетливо подтверждается данными по термодеструкции в вакууме (в течение 0,5 ч) полипропилена и полиизобутилена (табл. 1.2) [3]. Сравнение количества летучих продуктов, выделяющихся при соответствующих температурах, показывает, что полиизобутилен менее термостойкий по сравнению с полипропиленом. Так, температура полураспада полипропилена равна 660 К, а полиизобутилена-621 К [3]. Масс-спектроскопический анализ летучих фракций термораспада полипропилена при 653-683 К показал [3], что основными продуктами разложения являются пропилен, бутен, пентен, гек-сен, бутан, пентан и гексан. [c.16]

    Высокой коррозионной стойкостью обладают органические материалы — полиэтилен, поливинилхлорид, полипропилен и др. Однако недостатком большинства этих материалов является низкая термостойкость — их можно применять лишь до 60—80 °С. [c.142]

    Полипропилен относится к группе полиолефинов. Получают его полимеризацией пропилена в присутствии металлсодержащих катализаторов. Полипропилен характеризуется высокой кристалличностью и изотак-тическпм строением молекул, что и обусловливает его хорошую механическую прочность и высокую термостойкость. Морозостойкость немодифицирован ного полипропилена изменяется от —10 до -—15 С, а модифицированного — от —10 до —30 С. Полипропилен по механической прочности, химической стойкости, водостойкости и стойкости к воздействию нефти и нефтепродуктов превосходит полиэтилены. Хорошо поддается механической обработке, а также сварке нагретым воздухом или азотом при температуре 220—240 °С. При температуре 18—23 °С и при условии, что воздействие прямых солнечных лучей исключается, полипропилен устойчив к старению. Для предотвращения теплового старения в полипропилен вводят до 0,2 7о ароматических аминов, а для замедления светового старения — 0,3% технического углерода. [c.92]

    Сравнение ХПВХ с другими термопластичными полимерами — ПВХ, полипропиленом, сополимером АБС (акрилонитрил — бутадиен— стирол) показывает [30, 31, 43], что ХПВХ отличается очень высокой механической прочностью и термостойкостью, но уступает, например, ПВХ и АБС по ударной вязкости (табл. 5.5) [c.219]

    Полипропилен — наиболее перспективный материал, обладающий bi,i o-кой хиническон стойкостью, износостойкостью и термостойкостью. Он широко применяется для изготовления гальваннчески>, барабанов. Те.хничс-ские н технологические характеристики полипропилена описаны на с. 135. [c.129]

    Пленки из полипропилена прочнее полиэтиленовых и имеют еще меньшую влаго- и газопроницаемость. Из них изготовляют упаковочный материал, в том числе для хранения пищевых продуктов, а также плащи, косынки и другие изделия. В производстве пленочных материалов применяют и сополимеры пропилена с другими олефинами, например с бутиленом. Трубы из полипропилена обладают высокой коррозионной устойчивостью, они инертны к действию кислот, щелочей, минеральных и растительных масел, спиртов и других реагентов. Полипропилен применяют для изготовления электроизоляционных покрытий, к которым предъявляются требования повышенной термостойкости (до 120—140 °С). Изделия из полипропилена имеют более высокую теплостойкость, форма их более устойчива, чем из полиэтилена полипропилен более технологичен для производства труб, бутылок, канистр и других сосудов. Полипропилен пе-реработывают в изделия в основном теми же методами, что и полиэтилен. Он легко формуется, перерабатывается на экструзионных, литьевых машинах выдуванием, на машинах вакуумного формования. Его можно перерабатывать и методом центробежного формования, неприменимым для других термопластов. [c.103]

    Полипропилен Ответвления отсутавуют 0,90 На катализаторе Циглера-Натты Высокая разрывная прочность, хрупкий, термостойкий Высокопрочные, термостойкие, прозрачные, блестящие пленки [c.16]

    Изотактический полипропилен (ИПП) хорошо подходит для производства термостойкой, глянцевой пленки. ИПП имеет более высокую прочность и более высокую температуру плавления, чем у других полиолефинов. С помош ью быстрого охлаждения и/или применяя агенты, ускоряющие образование центров кристаллизации, можно добиться небольшого размера кристаллов и таким образом производить высокопрозрачную глянцевую пленку. Реологические свойства неидеальны для переработки экструзией с раздувом рукава, поэтому используется двухстадийная экструзия с раздувом. Синдиотактический полипропилен (СПП) становится все более доступным благодаря применению полимеризации на металлоценовом катализаторе. Из СПП полз ается более эластичная пленка, чем из ИПП. Полипропилены обладают множеством преимуществ перед полиэтиленами благодаря прочности, термостойкости, прозрачности и глянцевой поверхности. Материал особенно подходит для производства пленок с более длительным сроком службы [6]. [c.19]

    Для изготовления деталей под капотом, которые должны обладать повышенной химо- и термостойкостью, используют главным образом пластмассы конструкционного назначения — армированные и неармированные полиамиды и полипропилен перспективны модифицированный полифениленоксид и полиацетали. Изучается возможность изготовления двигателей и систем передач из полиамидоимида, трубопроводов из стеклонаполненного полиэфирэфиркетона и подшипников системы передач из полиэфирсульфона. В Западной Европе предполагается использовать эти смолы для изготовления юбок поршней. [c.70]

    Физические и химические свойства. Жидкость с неприятным запахом. Окисляется КМПО4 до адипиновой кислоты. Полимеризуется с образованием поливинилциклогексана, обладающего высокой температурой плавления (по термостойкости превышает полиэтилен и полипропилен). См. также приложение. [c.93]

    Полипропилен, полученный в присутствии катализатора Циглера, изотактичен и обладает высокой степенью кристалличности его температура плавления равна 175°С. Из него можно изготовлять волокна, напоминающие волокна найлона, хотя по термостойкости они не могут сравниться с найлоновыми (т. пл. 270°С) и намного труднее поддаются крашению (разд. 28-3). [c.499]

    Полипропилен представляет собой жесткий продукт, без запаха. Важнейшим его свойством является высокая температура плавления (160—170°С). При 120°С полипроиилен может сохранять свои свойства до полутора лет без термического разрушения. На термостойкость материала оказывает большое влияние контакт с металлами, изделия из полипропилена устойчивы к кипячению и могут неоднократно стерилизоваться без деформации при температурах выше 120° С. Полипропилен, содержащий стабилизатор, устойчив к окислению до 300° С даже после нагревания в течение нескольких часов в воздушной среде. [c.177]

    При изучении термостойкости стереорегулярного полипропилена установлено, что большое значение имеют фазовое состояние и строение полимера о. В результате нагревания на воздухе при 150° С Б кристаллической части полипропилена наблюдается относительно меньшее понижение молекулярного веса по сравнению с аморфной. При введении в полипропилен антиоксидантов— дикрезилолпропана, три-трег-бутилфенола и смеси [c.199]


Смотреть страницы где упоминается термин Полипропилен термостойкость: [c.192]    [c.193]    [c.43]    [c.11]    [c.859]    [c.59]    [c.60]    [c.141]    [c.192]    [c.259]    [c.368]    [c.320]   
Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Равнозвенность полимеров (1977) -- [ c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2025 chem21.info Реклама на сайте