Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водорода перекись энергия диссоциации

    Перекись грег-бутила является инициатором радикальной полимеризации. Степень полимеризации должна сильно зависеть от скорости обрыва цепей. В отсутствие растворителя обрыв цепи осуществляется, главным образом, путем рекомбинации и диспро-порционирования полимерных радикалов. В присутствии толуола возможен обрыв цепи в результате отрыва атома водорода полимерным радикалом с образованием молекулы полимера и бензильного радикала. Поскольку энергия диссоциации связи С—Н в толуоле невелика, такой процесс весьма вероятен и должен приводить к уменьшению степени полимеризации. Действительно, в этом случае степень полимеризации около 9000. [c.119]


    Первая стадия называется стадией инициирования цепи. На этой стадии используют специальное вещество, обладающее низкой энергией диссоциации расщепление перекиси бензоила происходит не только потому, что связь кислород—кислород легко разрывается (ср. перекись водорода в табл. 18), но и потому, что возникающие радикалы стабилизированы сопряжением [c.253]

    Возможно, конечно, что связи ОН в перекиси водорода существенно Отличаются от этих связей в воде, тогда сделанное предположение теряет силу. Такого рода возражения высказаны Скиннером [771 и Уолшем [40[. Скиннер указывает, что перекись водорода аналогично гидроксильному радикалу. ие обладает определенной энергией резонанса ионных форм, характерных для воды. Он поэтому считает, что энергия связи ОН в гидроксиле [реакция (5)1 больше подходит для перекиси водорода. На основании принимавшейся в то время величины энергии диссоциации гидроксила 102 ккал/моль Скиннер вычислил, что энергия связи 00 равна примерно 52 ккал/моль. Глоклер и Мэт-лак 78] высказалис1з против основы этого заключения и показали, что перекись водорода обладает почти той же ионной энергией резонанса, что и вода, и что в гидроксиле эта энергия отсутствует. В качестве дополнительного доказательства правильности рассчитанной величины 34 ккал для энергии связи ОО Глоклэр и Мэтлак сообщают, что эта величина попадает па кривую, выражающую энергии диссоциации озона и молекулярного кислорода О., в различных электронных состояниях в виде функции межатомных расстояний. Однако последнее соотношение между энергией связи и энергией диссоциации не поддается четкому и бесспорному истолкованию. [c.285]

    Чем больше величина энергии диссоциации соединения на радикалы, тем прочнее связь этих радикалов в молекуле. Из приведенных в таблице соединений наиболее прочной кислород-водородной связью обладает молекула воды энергии диссоциации ее на радикал гидроксил и атом водорода составляет 120к а л оль. Наименее прочной является перекись третичного бутила, энергия диссоциации которой по кислород-кислородной связи не превышает 38 ккал моль. Соответственно этому период полураспада перекиси на свободные т/ е г.бутилоксильные радикалы при 125° равен всего 12 часам [c.115]

    Так как энергии диссоциации углерод — углеродных и углерод—кислородных ковалентных связей составляет около 80 ккал, а энергия света в далеком ультрафиолете соответствует приблизительно 112 ккал на моль, то кажется мотивированным вывод о том, что фотоны из далекого ультрафиолета могут сами по себе вызвать расщепление целлюлозной макромолекулы. Энергия в близком ультрафиолете (388 до 385 ыа), составляющая от 73 до 74 ккал, по-видимому, недостаточна, и, чтобы она стала эффективной, требуется промежуточная реакция с участием кислорода [319]. Хотя озон образуется тогда, когда кислород облучается коротковолновым (323 М(1) ультрафиолетовым светом, он разлагается более длинными волнами (оранжевый свет 601 мр.) [328] и, следовательно, вряд ли играет роль в обсуждаемых опытах. С другой стороны, растворы перекиси водорода неустойчивы при коротких волнах в 250—300 ми, но перекись водорода свободно образуется, когда акцептор, в данном случае пода, облучается фиолетовым светом или близким к ультрафиолетовому (от 400 до 470 ма) в присутствии кислорода и сенсибилизатора. Окись цинка, которая поглощает свет в 385 ма, является хорошим сенсибилизатором, особенно в щелочной среде, а глицерин, глюкоза и бензидин известны как акцепторы [329, 330]. Общеизвестно, что пряжи, подвергнутые для удаления блеска обработке двуокисью титана, которая поглощает свет волн таких же длин, особенно подвержены фотохимической деградации в присутствии кислорода и влаги. Роль перекиси водорода в таких деградациях стала весьма вероятной благодаря ценным опытам Эгертона [331],- который попеременно облучал в течение 43 дней на солнце нити хлопковой пряжи не подвергшейся обработке и пряжи, пропитанной 20%-ной окисью цинка или 30 (.-ной окисьютитана. Когда окружающий воздух сухой, текучести медноаммиачного раствора, полученного как из необработанных, так и пропитанных нитей, увеличиваются в небольшой степени, которая выявляется только по сравнению с необлучен-ными контрольными образцами. Однако присутствие влаги вызывает увеличение текучести нитей, обрабатываемых окисями цинка и титана,соответственно на 28 и 7,8 ре. Текучесть других нитей, необработанных, но облученных, также увеличивается на 29 и 9,6 ре, даже вопреки тому, что они отодвинуты от других на расстояния от 0,3 мм до 8 мм. Таким образом, выявляется, что облучение пропитанных нитей вызывает образование окислителя, достаточно летучего для того, чтобы диффундировать через 0,3 мм воздуха и более и окислять близлежащую нить. Так как существование свободного радикала слишком непродолжительно, чтобы сохраниться при таком перемещении, то самым вероятным агентом является перекись водорода. Воздух, барботируемый [c.183]


    Прямое влияние повышенных температур на протекание реакции объясняется изменением термодинамических соотношений между исходными реагентами, промежуточными частицами и продуктами. Реакции диссоциации малых молекул сопровождаются увеличением числа частиц в системе. Они все эндотермичны, но для них характерно положительное изменение энтропии порядка 30 кал/(моль-град) на одну дополнительно образовавшуюся молекулу. Свободная энергия ДС° = ДЯ°—7Д5°, отнесенная к стандартным условиям, меняется от больших положительных до больших отрицательных величин при росте температуры. Для системы водород — кислород перекись водорода Н2О2 стабильна (не распадается на Нг и Ог) только до температур порядка 1300 К при парциальных давлениях около одной атмосферы. Малоактивный радикал НОг с энергией связи 47 ккал/моль начинает заметно распадаться на Н и Ог при температурах выше 2000 К, что является обратным процессом для реакции обрыва. При температурах 2500—ЗООО К происходит уже распад НаО, а затем и двухатомных продуктов распада Н2О. При таких высоких температурах значительно уменьшается экзотермичность реакции и реальный прирост температуры становится существенно меньше максимально достижимого в процессе адиабатического горения. [c.118]

    Применение Бодлендером принципа цепных реакций к процессам аутоксидации несомненно является удачным углублением теории Баха-Энгле-ра в определенных случаях. Дальнейшим этапом развития этих идей является разработанная Н. Н. Семеновым теория разветвляющихся цепных реакций. Но далеко не все реакции аутоксидации носят цепной характер, как это показывает пример окисления трифенилметила. Из того, что непременным условием всякого окислительного процесса при обыкновенной температуре является наличие в окисляющемся веществе свободной энергии в количестве, достаточном для активирования молекулы кислорода, вытекает, что нельзя делать заключения на основании процесса окисления насыщенного соединения при повышенной температуре о механизме окисления его при обыкновенной температуре, ибо энергетическое состояние насыщенного соединения при повышенной температуре далеко не то, что при обыкновенной. Исследуя диссоциацию насыщенных углеводородов при повышенной температуре в отсутствии кислорода, Нюит нашел, например, что гексафенилэтан около 500° распадается на метан, водород и ненасыщенные соединения. Нет никакого сомнения, что активирование молекулы насыщенного углеводорода, начало его распада на ненасыщенные элементы происходит при еще более низкой температуре. А из этого следует, что насыщенные углеводороды находятся при повышенной температуре в таком же состоянии, как ненасыщенные при обыкновенной, и с молекулярным кислородом реагируют, как последние, т. е. присоединяют молекулу с первичным образованием перекиси. Механизм первоначальной реакции в обоих случаях один и тот же, но дальнейший ход ее различен, так как образовавшаяся перекись реагирует при повышенной температуре быстрее и иначе, чем при обыкновенной. То же относится и к другим продуктам реакции. Поэтому при горении водорода из первично образовавшейся перекиси водорода может получиться гидроксил, который нри действии атомного водорода на молекулярный кислород при обыкновенной температуре не образуется. [c.133]


Смотреть страницы где упоминается термин Водорода перекись энергия диссоциации: [c.496]    [c.287]    [c.496]    [c.303]    [c.129]    [c.292]   
Общий практикум по органической химии (1965) -- [ c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Водород диссоциация

Водорода ион перекисью водорода

Водорода перекись

Энергии с водородом

Энергия диссоциации



© 2025 chem21.info Реклама на сайте