Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бредиг

    Механическое действие электрического разряда в воде было обнаружено еще в 1767- 1769 гг. Г. Лейном и Дж. Пристли. Г. Бредиг в 1898 г. и Сведберг в 1904 г. получили с помощью дугового разряда в [c.116]

    Реакцию (2) исследовали сотрудники лаборатории концерна Империал кемикл индастриз [4], а также Бредиг и другие [5]. Она протекает только при температурах порядка 1200—1500°, т. е. в условиях, когда происходит пиролиз метана в ацетилен. В лаборатории для осуществления этой реакции смесь газов пропускали через узкие трубки. Реакция (4) тоже требует высоких температур такого же порядка. При низкой температуре, на которую указывает величина АС в табл. 72 (см. четвертую графу), углеродная связь в ацетилене не разрывается (стр. 380). [c.376]


    Скорость разложения, а следовательно, и скорость выделения азота при этих реакциях зависит от концентрации ионов Н . Поэтому, измерив объем азота, выделившегося за определенный промежуток времени, можно судить о силе кислоты, под действием которой происходит разложение (Бредиг). [c.358]

    Они были одними из первых методов получения коллоидных систем. М,ежду двух электродов, состоящих из металла, который необходимо измельчать, и погруженных в воду или водный раствор, пропускается ток при напряжении около 100 В, так что возникает электрическая дуга при силе тока порядка нескольких ампер. При этом около электродов образуется облачко коллоидно-измельченного металла или его оксида. Предложенный Бредигом (1898 г.) метод имеет тот недостаток, что сопряжен с интенсивным разогреванием раствора, из-за чего он неудобен для диспергирования в органических жидкостях, которые разлагаются при высоких температурах. Кроме того, при диспергировании в водных растворах с помощью этого метода идут интенсивные процессы электролиза, приводящие к образованию вторичных продуктов. Указанных недостатков в какой-то мере удается избежать при использовании метода Сведберга, в котором питание дуги осуществляется с помощью высокочастотного переменного тока, получаемого, например, от катушки Румкорфа. [c.14]

    Электрический метод. Этот метод, предложенный Бредигом еще в 1898 г., используется преимущественно для приготовления коллоидных растворов благородных металлов. Сущность его заключается В получении электрической дуги между находящимися в воде электродами из золота или платины, серебра и т. д., т. е. из металла, золь которого хотят получить. В дуге под воздействием высокой температуры металл электродов испаряется, а затем пары его конденсируются в частицы коллоидных размеров, образуя со- [c.287]

    В 1898 г. Бредигом предложен способ получения гидрозолей благородных металлов распылением их в соответствующей среде при помощи дуги постоянного тока. Схема приведена на рис. 96. [c.303]

    Физические свойства. По внешнему виду никель — серебристо-белый, обладающий сильным блеском металл, плотность его 8,9. Его температура плавления ниже, чем у железа и кобальта. Никель поддается ковке и сварке, хорошо полируется. Он очень тягуч, легко вытягивается в проволоку. Его электропроводность и теплопроводность приблизительно в 7 раз ниже, чем у серебра. Никель ферромагнитен, но в меньшей степени, чем железо. Сплошной кусок никеля мало растворяет водород, но очень измельченный никель поглощает огромное его количество. Как палладий и платина, никель обычно образует гранецентрированную кубическую решетку. Однако Бредиг в 1927 г. обнаружил у никеля, катодно распыленного в атмосфере водорода, решетку типа магния (гексагональная, с плотной упаковкой), т. е. того же строения, которое обычно имеет кобальт. [c.384]


    Электрический метод. Метод получения коллоидных растворов при помощи электричества, который предложен Бредигом (1898), можно использовать, главным образом, для приготовления гидро- [c.117]

    Электрический метод. Метод получения коллоидных растворов при помощи электричества, который предложен Бредигом коллоидных [c.141]

    Еще более резкие локальные изменения давления возникают в колебательном разряде конденсированной искры высокого напряжения в межэлектродном пространстве. Современная разработка этого электрического метода (Сведберг, 1905 г.), названного электрогидравлическим эффектом, позволяет диспергировать твердые минералы (при V гьг 50 кВ) ее используют также для обеззараживания осадков сточных вод. Другой электрический метод (Бредиг, 1898 г.) основан на образовании вольтовой дуги между электродами из диспергируемого металла, помещенными в воду. Сущность метода заключается в распылении металла электрода в дуге, а также в конденсации паров металла, образующихся при высокой температуре. Поэтому электрический способ соединяет в себе черты диспергационных и конденсационных методов. [c.23]

    Дисперсии металлов получают путем распыления под водой или в органической жидкости в вольтовой дуге (Бредиг), или в высокочастотном разряде (Сведберг), хотя в этом случае большое значение имеет конденсация паров металлов. Эмульсии получают путем диспергирования действием ультразвука. При этом всегда образуются различные окисленные продукты, стабилизирующие суспензии. [c.20]

    На рубеже двух столетий ряд химиков пришел к убеждению об универсальной применимости закона действия масс, хотя сам Оствальд, как, по-видимому, и всегда, принимал его с некоторыми оговорками. Бредиг и Штерн [c.122]

    Реакция образования дтуравьиноп кислоты из водорода и углекислоты была исследована Бредигом, Картером и Эндерли [34] в интервале 20— С в присутствии палладиевой черни в качестве катализатора. Опыты этих авторов бг.ши проведены под давлением выше атмосферного в специально приспособленном автоклаве с мешалкой, футерованном серебром. В автоклав загружали муравьиную кислоту и добавляли смесь водорода и углекислоты под давлением (табл. 9). Равновесие было исследовано с, двух сторон. Для этой цели исходные газовые смеси готовили близкими по составу к равновесным и меняли направление реакции, изменяя начальное давление. [c.358]

    Что случилось нового, чтобы пересматривать наше отношение к карбидной гипотезе Неужели только то, что Бредиг доказал возможность синтеза оптически активного соединения из бенз-альдегида и синильной кислоты, что как будто, по словам Г. Л. Стадникова, подает надежду найти рациональное объяснение активности нефтей в случае допущения их минерального происхожде- [c.333]

    Позднее Бредиг показал, что при асимметрическом синтезе нитрила миндальной кислоты ио Розенталеру эмульсин можно заменить такими алкалоидами, как хинин или хинидин. Применение хинина приводит к образованию гликозида нитрила /-миндальной кислоты, применение хинидина — к образованию d-формы. В этом случае также приходится предположить, что асимметрическое течение реакции обусловлено промежуточным образованием продукта присоединения оптически деятельного хинина и H N или бензальдегида. Возможность использования хинина или хинидина вместо эмульсина имеет большое теоретическое значение, так как она показывает, что фермент, химическая природа которого не установлена, может быть с успехом заменен сравнительно просто построенными алкалоидами. [c.672]

    Раствор таннина в воде, 1%-ный (свежеприготовленный) Ка СОз, 1%-ный Прибор Бредига для распыления металлов Кювета с плоскопараллельными стенками размером 10X8X2 см [c.156]

    Метод электрораспыления был предложен Бредйгом в 1898 г. Бредиг включал в цепь постоянного тока силой 5—10 А и напряжением 30—ИОВ амперметр, реостат и два электрода из диспергируемого металла. Электроды он погружал в сосуд с водой, охлаждаемый снаружи льдом. Схематическое устройство прибора, которым пользовался Бредиг, показано на рис. VIII, 12. При прохождении тока через электроды между ними под водой возникает вольтова дуга. При этом у электродов образуется облачко высокодисперсного металла. Для получения более стойких золей в воду, в которую пбгружены электроды, целесообразно вводить следы стабилизующих электролитов например гидроокисей щелочных металлов. "Интересно, что диспергированию в описанных условиях подвергается нб только катод, но и анод. [c.253]

    Метод Бредига из-за высоких температур, создающихся около вольтовой дуги, применим тблько для получения гидрозолей. Сведберг усовершенствовал этот метод, сделав его пригодным для получения органозолей. Для этого вместо постоянного тока Сведберг применил переменный ток высокой частоты, а сам процесс электрораспыления проводил путем погружения электродов в металлический порошок, лежащий на дне сосуда в дисперсионной среде. Электрораспыление в этом случае происходит в результате проскакИвания искры между отдельными частицами порошка. При таком способе сильно уменьшается термическое разложение окружающей среды и можно получить золи металлов в различных органических жидкостях. [c.253]


    Конденсация паров. Это также метод получения золей физической конденсацией. При пропускании паров какого-либо простого вещества в жидкость в результате конденсации могут образоваться стойкие золи. Сюда относятся электрические методы получения дисперсий металлов, распыляемых под водой или в органической жидкости в вольтовой дуге (метод Бредига) и в искровом высокочастотном разряде (метод Сведберга). Стабилизаторами для образующихся при конденсации паров дисперсий служат оксиды этих же металлов, являющиеся побочными продуктами процесса распыления. Оксиды адсорбируются на частицах металла и создают защитный слой. [c.413]

    Р ис. 34. Схема получения коллоидных растворов металлов электрическим методом Бредига [c.118]

    Исследования Э. Фишера сближали химию с биологией и позволяли более глубоко понять условия, при которых осуществляется синтез в живых организмах. Вот почему у Г. Бредига были все основания сказать, что Я. Вант-Гофф своим учением об асимметрическом атоме совершил первую удачную попытку проникнуть в биологическую тайну природы. [c.231]

    Диспергирования можно достичь не только механическим путем. Разработаны электрические методы получения коллоидных систем. Так, метод Бредига основан на образовании вольтовой дуги между электродами из диспергируемого металла, помещенными в воду. Сущность метода заключается в распылении металла электрода в дуге, а также в конденсации паров металла, образующихся при высокой температуре. Поэтому электрический способ соединяет в себе черты диспергационных и конденсационных методов. [c.21]

    Высокодисперсные золи металлов и сплавов в самых различных дисперсионных средах могут быть получены методом электрораспыления, промежуточным по своей физико-химической природе между диспергированием и конденсацией. Наиболее эффективно осуществляется электрораспыление порошков в непроводящих средах с применением высокочастотных разрядов высокого напряжения. Этот метод, разработанный Бредигом и Сведбергом, позволяет получать разнообразные золи, например такие экзотические, как золи щелочных металлов в органических растворителях. Можно также получать золи со сложными по составу частицами дисперсной фазы в результате электрораспы-ления сплава заданного состава. [c.139]

    Электрическое диспергирование. Этим методом получают коллоидные растворы металлов путем распыления в вольтовой дуге электродов из металла, погруясенных в воду. Метод был изобретен Г. Бредигом в 1898 г. Для получения более стойких гидрофобных золей в воду вводят следы стабилизирующих электролитов. Таким образом получают гидрозоли щелочных металлов. [c.82]

    Здесь достаточно напомнить о направлении, начатом работами Бредига [345] по коллоидным растворам металлов как моделям ферментов. Теория промежуточных соединений вн ла свой вклад благодаря работам Михаэлиса [346] и его последователей, доказавших существование промежуточных комплексов между субстратом и ферментом и в ряде случаев определивших константы равновесия их образования. Адсорбционная теория контактного катализа была привлечена главным образом для объяснения ингибирования ферментов, например, в теории действия антиметаболитов Вулли [347]. [c.85]

    Бредиг и Байерс [302] получали метиловый спирт, свободный от альдегидов и кетонов, пУтем обработки его гипойодитом натрия и окисью серебра. (См. также работу Перса и Мортимера [1450] и соответствующие методы, описанные в разделе, посвященном ЭТИЛОВОМУ спирту.) [c.304]

    Упомянутые работы Лепуорта, Бредига и Штерна явились прочной основой для создания методики кинетического исследования механизмов реакций. Как ни странно, им не придали должного значения. Химики продолжали создавать тщательно разработанные теории, касающиеся механизмов реакций, которые одобрялись и заучивались целыми поколениями, но которые могли быть опровергнуты (и позже действительно были опровергнуты) несколькими простыми кинетическими экспериментами. По-видимому, в противовес этим необоснованным рассуждениям видные химики-органики заявляли, что в своей деятельности они не используют соображений о. механизме, хотя их дела и расходились со словами. Сам Лепуорт опубликовал еще только одну посвященную этому вопросу работу [56], правда важную и основополагающую. Он показал, что тормозящее действие воды на скорость кислотнокатализируемой этерификации кислот в спиртовом растворе в точности соответствует тормозящему действию аммиака на скорость кислотнокатализи-руемых реакций в воде. [c.124]

    Поскольку скорость распада диазоуксусного эфира пропорциональна концентрации протонов, этим способом можно проводить определение pH (метод Бредига). [c.525]

    Распыленные металлы в воде, т. е. ух коллоидальные растворы. обладают сильными каталитическими свойствами. Они также теряют способность каталитического действия в присутстии некоторых веществ. Бредиг нашел между ними и органическими ферментами, в отношении их каталитических свойств и воздействия на них каталитических ядов, большое сходство. [c.106]

    Еще в 1898 г. Георг Бредиг (1868—1944), работавший в то время в Оствальдовской лаборатории в Лейпциге, изучал каталитическое действие высокодиспергированных металлов (названных им неорганическими ферментами), предложил свой известный метод электрического распыления металлов вольтовой дугой внутри жидкости. Одновременно Рихард Зигмонди (1865— 1929) в Вене исследовал многие полученные им коллоидные растворы. Изучением путей получения разнообразных коллоидных растворов, а также суспензий и эмульсий занимались в течение первых десятилетий текущего столетия многие исследователи. [c.253]

    Вальдсн [19] показал, что Л = 65,7/ >о 10. воспользовавшись эмпирическим правилом Оствальда—Вальдена—Бредига. С помощью этого соотношения получаются значения того же порядка, что и для большого числа электролитов в различных [c.142]


Библиография для Бредиг: [c.168]   
Смотреть страницы где упоминается термин Бредиг: [c.1149]    [c.156]    [c.253]    [c.255]    [c.136]    [c.141]    [c.25]    [c.168]    [c.253]    [c.99]    [c.120]    [c.254]   
История химии (1976) -- [ c.231 ]

Курс коллоидной химии 1974 (1974) -- [ c.21 ]

Курс коллоидной химии 1984 (1984) -- [ c.23 ]

Курс коллоидной химии (1984) -- [ c.23 ]

Краткий курс коллойдной химии (1958) -- [ c.22 , c.175 ]

Руководство по электрохимии Издание 2 (1931) -- [ c.27 , c.69 , c.96 , c.106 , c.212 , c.250 , c.301 ]

Эволюция основных теоретических проблем химии (1971) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Бредиг Bredig

Бредиг диссоциация слабых электролитов

Бредига метод

Бредига прибор

Бредигит

Вольтова дуга Бредига



© 2025 chem21.info Реклама на сайте