Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободный радикал причины стабильности

    Метод спиновой метки заключается в том, что к непарамагнитной молекуле прикрепляется ковалентной, гидрофобной или какой-либо другой связью стабильный радикал так, чтобы свободная валентность оказалась незатронутой. Особенно широко для этого используются нитроксильные радикалы различного строения. В зависимости от природы связи метки с исходной молекулой, геометрии окружения и других причин парамагнитная [c.45]


    Метод спиновых меток заключается в том, что к непарамагнитной молекуле прикрепляется ковалентной, гидрофобной или какой-либо иной связью стабильный радикал так, чтобы его свободная валентность осталась незатронутой. Особенно широко для этого используются азотнокислые радикалы К1-(К2)М-0 различного строения [37]. В зависимости от природы связи метки с исходной молекулой, геометрии окружения и других причин группа >N0 может быть жестко закрепленной (тогда СТС будет анизотропной), движение этой группы может быть заторможенным или свободным. Характер движения отчетливо проявляется в форме спектра и служит важным источником информации об исходной молекуле. [c.285]

    Феноксильный радикал образуется только как интермедиат и термодинамически не стабилен. Образование более стабильной структуры происходит в результате рекомбинации с другим свободным радикалом в любых наиболее вероятных положениях неспаренного электрона, за исключением 3-го положения (Яу), неактивного из-за стерических препятствий и по термодинамическим причинам. [c.396]

    Известны свободные радикалы более сложного строения, которые сравнительно стабильны и могут существовать при обычных условиях, например радикал трифеннлметил (СбНз)зС (с его открытия началось изучение свободных радикалов). Одной из причин стабильности трифенилметила являются пространственные факторы - большие размеры фенильных групп препятствуют соединению радикалов в молекулу гексафенилэтана о других причинах см. разд. 2.5. [c.56]

    Расщепление связи С—Н может также быть результатом атаки на эту связь другого свободного радикала (гетероатомный радикал называется.в этом случае цромотором радикалов ). При этом причина отрыва атома водорода — возникновение более стабильного углеродного радикала. [c.209]

    Более подробное исследование термических свойств методами ДТА и ТГА выявило некоторые особенности термической стабильности (табл. 7.4). В исходном ПВХ наблюдается выделение НС1 примерно при 300 °С, деполимеризация — при 450 —460 °С. Эндотермический эффект, соответствующий этому последнему процессу, не зависит от наличия мономера, стабилизатора, пластификатора или предварительного облучения. В то же время эндотермический эффект, связанный с отщеплением НС1 (Th i), весьма чувствителен ко всем этим факторам. Введение только пластификатора и стабилизатора повышает Th i облучение таких контрольных образцов не оказывает дополнительного влияния на положение пика. В присутствии полифункционального мономера Гнс снижается, но остается на уровне примерно 310 °С. Повышение чувствительности может быть связано с переносом свободного радикала на цепь ПВХ, приводящим к образованию двойной связи, которая может служить потенциальной причиной нестабильности. С другой стороны, при Гнс1 образцы, содержащие мономеры, обнаруживают меньшую потерю массы при длительном нагревании. Эта характеристика практически не зависит от функциональности. [c.202]


    Направление деструкционных процессов определяется прежде всего структурой исходного полимера, а соответственно, и стабильностью образующихся при инициировании свободных радикалов. Благоприятно сказываются на стабильности радикалов стерические факторы, наличие сопряжения и заместителей. С повышением стабильности макрорадикала длина кинетической цепи увеличивается и преобладает реакция деполимеризации. По этой причине полиметилметакрилат, при деструкции которого четвертичный углеродный атом обеспечивает образование стабильного свободного радикала, по существу почти полностью деполимери-зуется с регенерацией исходного мономера. Деструкция полистирола развивается с выходом мономера только до 65%, так как при этом образуется менее стабильный радикал. [c.366]

    Отрыв одного электрона от молекулы с заполненной электронной оболочкой приводит к радикал-катиопу. Как было сказано выше (разд. 1.1), такие частицы могут рассматриваться как карбоний-ионы, но наличие нечетного числа электронов резко отделяет их от обычных диамагнитных ионов карбония. По этой причине они будут рассмотрены в гл. 8 вне рамок основного обсуждения карбониевых ионов. Здесь уместно только отметить, что радикал-катионы обычно образуются при отрыве одного электрона от стабильной молекулы либо за счет химического окисления, либо за счет столкновения с энергетически богатой частицей фотона, электрона или более тяжелой частицей, образующейся при радиолизе. Соответственно обычный карбоний-ион может образоваться при отрыве электрона от электрически нейтрального свободного радикала. Так, например, под действием электронного удара в масс-спектрометре могут генерироваться ионы карбония из свободных радикалов. Пока эта реакция не представляет практического интереса, но ее изучение приводит к получению данных по энергетике образования карбоний-ионов (разд. 4.1.3). [c.72]

    Бэмфорд и Барб [59] также приписали ускорение реакции у.мень-шению скорости обрыва, но предположили другую причину уменьшения скорости. Они считают, что полимерные частицы аггреги-руются после осаждения и окклюдируют растущие полимерные радикалы вместе с мономером. В полимерах, абсорбировавших мономер (и набухших), захваченный радикал может продолжать расти, как при эмульсионной полимеризации, и вероятность обрыва сильно уменьшается. Исследование методом электронного парамагнитного резонанса (ЭПР) доказало, что полимерные частицы захватывают радикалы [60]. Бэмфорд и сотр. [61] применили метод ЭПР для измерения концентраций радикалов, захваченных полимерными частицами. Бэмфорд и Дженкинс [62] использовали реакцию захваченных радикалов со стабильным свободным радикалом а, а -дифенил-р-пикрилгидразилом, чтобы оценить количество захваченных радикалов, и показали, что эти радикалы могут инициировать быструю полимеризацию при нагревании этой системы до 60°. [c.425]

    Наиболее важной причиной относительной стабильности нитроксильных радикалов является, по-видимому, высокая степень локализации неспаренного электрона на NO-гpyппe радикала с одновременным пространственным экранированием этой группы геминальными заместителями. Первая из причин не позволяет насытить свободную валентность при реакциях, происходящих не по N 0-группе радикала, а экранировка затрудняет реакции по свободной валентности. [c.12]

    Для свободных радикалов, если не считать таких стабильных радикалов, как N0, ЫОг, СЮг и ЫРг, имеется очень мало прямых термохимических данных. Почти все наиболее достоверные значения теплот образования получены из кинетических измерений энергий диссоциации связей, в то время как энтропии и теплоемкости можно вычислить лишь с помощью статистических методов. Все это является- причиной ограниченности тех сведений, которые имеются по термохимии свободных радикалов. Теплоты образования обычно определены с погрешностью ккал/моль, а часто со значительно худшей точностью. Однако молено ожидать, что правила аддитивности свойств групп применимы и к радикалам, и поэтому можно вывести для любого алкильного радикала, если известна соответствующая величина для СН3СН2, (СНз)2СН и (СНз)зС. Энтропии радикалов могут быть рассчитаны на основе аддитивности свойств групп из энтропий простейщих радикалов, однако для последних энтропии должны быть вычислены исходя из предполагаемых структур радикалов и частот колебаний. Хотя есть основания полагать, что замещенные метильные радикалы плоские и поэтому имеют более высокую симметрию, чем неплоские радикалы, все же оценки, которые можно сделать для радикалов, характеризуются некоторой неопределенностью. При рассмотрении электронной вырождениости, как и ранее, мы будем учитывать только спиновую вырожденность, т. е. мультиплетность, и для радикалов, имеющих один неспаренный электрон, [c.65]


Смотреть страницы где упоминается термин Свободный радикал причины стабильности: [c.51]    [c.73]    [c.220]    [c.131]    [c.483]    [c.403]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.838 , c.843 ]




ПОИСК





Смотрите так же термины и статьи:

Радикал стабильный

Свободные радикалы

Свободные радикалы ион-радикалы

Свободные стабильные

причины



© 2025 chem21.info Реклама на сайте