Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рецептор и перенос белков

    АТФ/АДФ-антипортер в конформации (ТДА ), отличной от той, которая характерна для него в мембране, переносится в матрикс энергозависимым способом. По неизвестной причине в матриксе происходит изменение конформации ТДА ТДА. Образованный ТДА встраивается во внутреннюю мембрану. В этом и во всех последующих случаях транспортируемый белок узнается рецептором во внешней мембране и транспорт происходит без промежуточного высвобождения белка в межмембранное пространство (по-видимому, белок переносится через места слияния внешней и внутренней мембран)  [c.165]


    Б. Опыты 2, 3 и 4 показывают, что белок с мол. массой 170 кДа (рецептор ФРЭ) фосфорилируется радиоактивным фосфатом в присутствии у- Р-АТР. Перенос фосфата из у-положения в АТР свидетельствует, что рецептор ФРЭ является субстратом для протеинкиназы. Поскольку интенсивность мечения белка 170 кДа увеличивается в присутствии ФРЭ, стало быть и активность протеинкиназы стимулируется ФРЭ. [c.479]

    B. Опыты 3 и 4 показывают, что рецептор ФРЭ может переносить фосфат от АТР на белок, следовательно, он является протеинкиназой. Опыт 3 менее убедителен, чем опыт 4. В опыте 3, хотя антитело и является специфичным к рецептору ФРЭ, все же нельзя исключить другие белки, в том числе и протеинкиназу, которые могли в виде примеси попасть в осадок. В опыте [c.479]

    Осн. ф-ция К.-активация мн. ферментов аденилатциклазы, фосфодиэстеразы циклич. нуклеотидов, киназы фосфо-рилаз и легких цепей миозина (киназы-ферменты, катализирующие перенос фосфорильной группы с АТФ на субстрат), Са -зависимой протеинкиназы цитоплазмы и мембран, фосфолипазы Aj и др. Благодаря этому он влияет на гликогенолиз и липолиз, секрецию нейромедиаторов, адренергич. передачу регуляторного сигнала, изменяет функциональные св-ва рецепторов, ускоряет активный транспорт Са в сердце и мозге, препятствует гуанозинтрифосфат-зависимой полимеризации тубулина (белок, из к-рого состоят жгутики и реснички клеток животных и растений), влияет на скорость деления клеток. [c.293]

    Плазматические мембраны нейронов и мембраны некоторых не нейрональных клеток содержат специфические рецепторы (рецепторы ЫОР), которые связывают N0 вначале с низким, а затем с высоким сродством. Было показано, что рецепторы с высоким сродством образуют кластеры и вместе со связанным ЫОР попадают в клетку при эндоцитозе и транспортируются внутри клетки частично к лизосомам (где происходит их деградация), частично к ядру. При их поглощении нервным окончанием рецептор и ЫОР переносятся путем ретроградного аксонального транспорта. Подобные процессы могут происходить и при других типах гормональной регуляции и поэтому КОР служит своеобразной моделью гормонов и факторов роста. Механизм действия ЫОР в клетке не изучен. В ответ на действие ЫОР наблюдалось фосфорилирование белка и поэтому было постулировано участие в этом процессе сАМР-зависимой протеинкиназы. Идентифицировано несколько субстратов КОР-активированного фосфорилирования (среди них тирозингидроксилаза, рибосомальный белок 56, гистоны Н1 и НЗ и не-гистонные ядерные белки), но не показана связь между этими процессами и физиологической функцией МОР. [c.326]

    Последовательность явлений, приводящих к такому поведению бактерий при напичии в среде аттрактантов и репеллентов, в настоящее время представляют себе следующим образом [10J. Присутствующие в растворе аттрактанты или репелленты связываются с хеморецепторами бактерий -белками, находящимися либо в мембране, либо вблизи нее, в поверхностном слое бактериальной клетки (в периплазме). При образовании комплекса аттрактант — хеморецептор (или репеллент — хеморецептор) происходит конформационное изменение белка-хеморецептора и окружающей его структуры, приводящее одновременно к двум явлениям. Во-первых, конфЬрмационное изменение передается по мембране от рецептора к эффектору, т.е. мотору, приводящему в движение бактерию, вызьшая изменение характера его вращения во-вторых, при этом конформационном изменении хеморецептора "обнажается группа —СО-0 , которая таким образом становится доступной для присоединения к ней метильной группы СНз (которая переносится от S-аденозилметионина на рецепторный белок ферментом метилтрансферазой). Сигнал, приходящий от хеморецептора к мотору, воздействует на так назьшаемый регулятор дрожания, вызывая изменения частоты дрожания бактерий. Метилирование -С0-0 -группы происходит медленно, в течение нескольких минут, и его результатом является возвращение конформации окрз жения хеморецептора к исходной, что приводит к исчезновению сигнала, поступающего от хеморецептора к регулятору дрожаний и восстановлению первоначальной (т.е. существовавшей до присоединения аттрактанта) скорости дрожаний бактерий, т.е. к адаптации бактерии к аттрактанту (рис. 5.7). [c.99]


    Гормоны связываются со специфическими рецепторами на поверхностной мембране клетки и активируют расположенный с внутренней стороны мембраны С-белок. Этот белок активирует или подавляет активность фермента аденилатциклазы. Аденилатциклаза катализирует синтез циклического АМФ из АТФ (рис. 52). Действие цАМФ ("вторичный передатчик") внутри клетки реализуется через другой фермент — протеинкиназу (ПК), которая при отсутствии цАМФ не активна. Далее цАМФ-активируемая про-теинкиназа катализирует перенос остатков фосфорной кислоты от АТФ на молекулы различных белков внутри клетки. Фосфорилированию могут подвергаться ферменты расщепления жиров, углеводов, других систем организма. В таком случае усиливается синтез АТФ в клетке, увеличивается количество ферментов белкового синтеза, изменяется функциональная активность клетки. Циклический АМФ расщепляется ферментом фосфодиэс-теразой, в результате чего прекращается действие гормона. [c.139]

Рис. 8-29. Импорт белков в митохондрии. N-концевой сигнальный пептид белка-предшественника распознается рецептором, который, как полагают, расположен во внешней мембране. Белок переносится через обе митохондриальные мембраны в спепиальных точках контакта. Для начала этого процесса необходим электрохимический градиент по сторонам внутренней мембраны. В матриксе сигнальный пептид отрезается Рис. 8-29. Импорт белков в митохондрии. N-концевой <a href="/info/150353">сигнальный пептид</a> <a href="/info/199849">белка-предшественника</a> распознается рецептором, который, как полагают, расположен во внешней мембране. <a href="/info/1901136">Белок переносится через</a> обе <a href="/info/101059">митохондриальные мембраны</a> в <a href="/info/1788797">спепиальных</a> <a href="/info/1868773">точках контакта</a>. Для начала <a href="/info/1757866">этого процесса</a> необходим <a href="/info/191333">электрохимический градиент</a> по сторонам <a href="/info/101045">внутренней мембраны</a>. В матриксе <a href="/info/150353">сигнальный пептид</a> отрезается
    В направлении сигнального пептида к мембране ЭР участвуют 1) частица, распознающая сигнал (а signal-re ognition parti le, SRP), связывающая сигнальный пептид, и ее рецептор, известный также как стыкующий белок. Частицы, распознающие сигнал, были открыты в ходе экспериментов, которые показали, что отмывка микросом в растворах солей уничтожает их способность импортировать секреторные белки. Эту способность можно восстановить, добавляя супернатант, содержащий солевой экстракт. Впоследствии фактор переноса был выделен Он [c.44]

    Пауза в трансляции длится до тех пор, пока захватившая рибосому частица не свяжется с SRP-рецептором, находящимся на цитоплазматической стороне мембраны шероховатого ЭР. Рецептор, как и сама частица, был вначале идентифицирован in vitro как необходимый компонент для переноса белка в ЭР. Теперь известно, что это интегральный мембранный белок, состоящий из двух цепей. Он взаимодействует с SRP-связанными рибосомами таким образом, что частица меняет свое положение и трансляция возобновляется. Одновременно рибосома связывается с мембраной ЭР. и растущая на ней полипептидная цепь переносится к системе траислокации в мембране. Эта система изучена [c.45]

    При перемещении груза из одного компартмента в другой транспортные пузырьки обязательно переносят как мембраны, так и содержимое органелл. Тем не менее и при таком выравнивающем процессе сохраняются различия в составе мембран разных компартментов белок-рецептор SRP встречается только в мембране ЭР, а гликозилтрансферазы и ферменты процессинга олигосахаридов расположены только в мембранах определенных цистерн Гольджи и т. д. Следовательно, мембраны ЭР и каждою типа цистерн Гольджи должны иметь специальные механизмы для сохранения своей уникальности. Один из них - наличие специальных сигналов сортировки для каждого этапа продвижения продукта через ЭР и аппарат Гольджи. В результате, например, белки плазматической мембраны, попадающие в клетку путем специфического эндоцитоза. захватываются окаймленными ямками. Однако существует точка зрения, согласно которой при биосинтетическом транспорте через ЭР и аппарат Г ольджи, используется противоположный механизм, г.е. транспорт происходит автоматически, а для удержания продукта в орга-нелле требуются специфические сигналы. В соответствии с этой гипотезой каждый постоянный компонент ЭР или аппарата Гольджи должен иметь специальный сигнал, отвечающий за его сохранение в этом компартменте. Стратегия автоматического движения вперед и избирательного сохранения привлекательна еще и потому, что число белков, проходящих сквозь ЭР и аппарат Г ольджи к месту конечного назначения, значительно больще числа белков, остающихся там. Более того, при такой стратегии те белки, которые утратили свои сигналы сортировки, или были направлены в неверном направлении, могут выводиться из клетки Наконец, если бы сигналы требовались для транспорта, то они были бы необходимы для каждой его стадии - от ЭР к аппарату Г ольджи [c.82]

    Клатрин находится на цитоплазматической поверхности плазматической мембраны и транс-сеты Гольджи по-видимому, этот белок участвует в транспорте, управляемом сигналами. Покрытые клатрипом пузырьки отвечают за опосредованный рецепторами эндоцитозный путь от плазматической мембраны к эндосомам, а также за управляемый рецепторами путь от транс-сета Г ольджи к эндолизосомам. В первом случае окаймленные пузырьки переносят избранный набор рецепторов клеточной поверхности. Вероятно, это верно и для различных типов покрытых клатрипом пузырьков, отпочковывающихся от аппарата Г ольджи. [c.83]


    В этой сложной проблеме мы рассмотрим лишь один вопрос—регуляцию секреции ФСГ по принципу обратной связи. ФСГ взаимодействует с клетками Сертоли и стимулирует синтез андроген-связывающего белка (АСБ). Этот белок представляет собой гликопротеин, связывающий тестостерон он от-Jшчaeт я от СГСГ и внутриклеточного рецептора андрогенов. АСБ секретируется в просвет семенного канальца, что сопровождается переносом тестостерона (в высокой концентрации) из клеток Лейдига, где он образуется, к месту, в котором происходит сперматогенез (рис. 50.3). Этот процесс, по-видимому, чрезвычайно важен, поскольку даже при нормальной концентрации тестостерона в общем кровотоке (что достигается, например, при заместительной терапии) сперматогенез не восстанавливается. [c.232]

    Используя приведенные выше данные, можно провести сравнение пространственных структур ряда функционально неродственных белков, таких, как, например, Ка , К+-АТРаза почек, белок быстрых натриевых каналов и аденилатциклаза мозга. Их объединяет то, что все они относятся к интегральным мембранным белкам и выполняемые ими функции имеют трансмембранный характер перенос веществ или передача химических сигналов. По-видимому, благодаря этому их пространственная организация имеет ряд общих особенностей. Все они содержат в своем составе гидрофобный сегмент, локализованный в средней части молекулы. Значительные части полипептидной цепи экспонированы на обеих мембранных поверхностях. Причем в некоторых случаях, таких, как, например, аденилатциклаза, одна полипептидная цепь образует три последовательно расположенных домена надмембранный, мембранный и внутриклеточный. В других, — например, Ка" , К -АТРаза, внутриклеточный домен образован а-субъе-диницей, тогда как Р-субъединица экспонирована практически целиком на внешней мембранной поверхности. Аналогичные особенности строения прослеживаются также и для других белков, функции которых имеют трансмембранный характер (ацетилхолиновый рецептор, цитохром-с-оксидаза или цитохром-редуктаза). [c.214]

    Мембранный иммуноглобулин, провзаимодействовавший с антигенрм, не мояжт сам по себе активировать ответ В-клеток. Связано это с тем, что его цитоплазматический хвост слишком короток. Он содержит всего несколько аминокислотных остатков, не способных вступать в реакционные отношения с внутриклеточными компонентами. Для переноса сигнала с антигенраспознающего рецептора внутрь клетки имеются специальные, низкомолекулярные белки с достаточно длинным хвостовым участком, находящиеся на клеточной поверхности в непосредственной близости от мембранного иммуноглобулина. Всего таких полипептидов два — Iga и Ig 3. Белок Iga специфичен по отношению к тому или иному изотипу иммуноглобулина. В то же время Ig 3 является общим для всех изотипов (рис. 3.3). [c.82]

    Экзотоксин А Р. aeruginosa представляет собой белок, состоящий из одной полипептидной цепи длиной в 613 аминокислот, которая организована в три функциональных домена (см. рис. 53, б). N-Концевой домен 1а (аминокислотные остатки 1-252) необходим для взаимодействия с рецепторами а2-макроглобули-на на поверхности клеток-мишеней (прототип лиганда идеального лекарства направленного действия) [196]. Функции домена 1Ь (аминокислотные остатки 365-404) неизвестны, и он может быть удален из полипептидной цепи токсина без потери активности. Домен II (аминокислотные остатки 253-364) обеспечивает эффективный перенос токсина в цитозоль клеток (система транс- [c.393]

    Транспорт апоцитохрома с, по всей вероятности, служит примером простейшего случая, когда внутримембранный белок сначала связывается с рецептором, а затем переносится через внешнюю мембрану в межмембранное пространство не зависящим от энергии способом. [c.163]

    Бактериальный токсин, ответственный за симптомы холеры, подавляет этот нормальный выключаюн1ий механизм Холерный токсин — фермент, катализирую1ций перенос ADP-рибозы с внутриклеточного NAD на G-белок, который так изменяется, что не может больше гидролизовать связанный с ним GTP. Если теперь молекула аденилатциклазы будет активирована гормон-рецептор-ным комплексом и молекулой такого модифицированного G-белка, то она останется необратимо активированной В результате в клетках кишечного эпителия длительно повышается уровень сАМР, что ведет к переходу Na и воды в кишечник (причина тяжелого поноса, вызываемого холерным токсином). [c.59]

    Оба типа транспортных процессов избирательно контролируются с помощью специальных белков, выполняющих роль сигналов сортировки. У белка, который напрямую переносится через мембрану, эти сигналы распознаются транслокатором в мембране. А в транспортный пузырек белок попадает, если его сигнал сортировки связывается с рецептором на мембране пузырька. Вероятно, существуют и такие транспортные пузырьки, которые способны захватывать белки, т ерявшие специфические сигналы сортировки. В любом случае вновь образующиеся пузырьки переносят только предназначенные для этого белки. [c.14]

    Особый интерес вызывает механизм экспорта новых субъединиц рибосом. Эти частицы слишком велики (около 15 нм в диаметре), чтобы проникать через 9-нанометровые каналы. Более вероятно, что они проникают сквозь ядерные поры, используя систему активного транспорта. Полагают, что и молекулы информационной РНК в составе рибонуклеопротеиновьк частиц (в комплексе со специальными белками) переносятся из ядра в цитоплазму активно. Если частицы коллоидного золота диаметром 20 нм, подобные тем, что были использованы в экспериментах с нуклеоплазмином (см. рис. 8-24), связать с молекулами малых РНК (тРНК или 58-РНК) и затем инъецировать в ядро ооцита лягушки, то они быстро переносятся чфез ядерные поры в цитоплазму. С другой стороны, если их ввести в цитоплазму ооцита, они останутся там. Видимо, помимо рецепторов, узнающих сигналы ядерного импорта, поры содержат один или более рецепторов, распознающих молекулы РНК (или связанные с ними белки), предназначенные для цитозоля когда эти рецепторы связаны, пора катализирует активный транспорт наружу вместо транспорта внутрь ядра. Заметим, что хотя некоторые белки ядерных пор (включая мажорный мембранный белок с мол. массой 190 кДа) недавно были выделены, до сих пор неизвестно, как именно работает ядерная пора. [c.28]


Смотреть страницы где упоминается термин Рецептор и перенос белков: [c.52]    [c.267]    [c.459]    [c.28]    [c.37]    [c.46]    [c.281]    [c.26]    [c.215]    [c.37]    [c.6]    [c.428]    [c.184]    [c.77]    [c.46]    [c.369]   
Аффинная хроматография (1980) -- [ c.348 , c.354 ]




ПОИСК







© 2025 chem21.info Реклама на сайте