Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аккумуляторы электрические щелочные

    Несмотря на то, что щелочные аккумуляторы значительно отличаются от свинцовых, ответить на вопрос, какого типа аккумулятор лучще, нельзя. Щелочные аккумуляторы, обладающие многими положительными особенностями, в известных случаях не могут заменить свинцовых, так как по некоторым электрическим характеристикам сильно от них отличаются. [c.161]

    Аккумулятор — это гальваническая система, способная накапливать под действием электрического тока химическую энергию и отдавать ее во внешнюю цепь в виде электрической энергии. В химических лабораториях используются различные аккумуляторы свинцовые (кислотные), кадмиево-никелевые, железо-никеле-вые. Последние два относятся к щелочным аккумуляторам, В свинцовом аккумуляторе активным веществом положительного электрода является двуокись свинца, отрицательного — губчатый металлический свинец. Электролитом служит раствор серной кислоты уд. в. 1,18. Щелочные аккумуляторы по сравнению с кислотными имеют некоторые преимущества, в частности за ними проще уход, при применении они имеют меньший саморазряд и не выделяют вредных испарений. [c.237]


    Здесь опять возможна реплика придирчивого читателя о какой химической стойкости может идти речь, когда в предыдущем абзаце говорилось о защите серебряного покрытия родиевой пленкой Противоречия, как это ни странно, нет. Химическая стойкость — понятие многогранное. Серебро лучше многих других металлов противостоит действию щелочей. Именно поэтому стенки трубопроводов, автоклавов, реакторов и других аппаратов химической промышленности нередко покрывают серебром как защитным металлом. В электрических аккумуляторах с щелочным электролитом многие детали подвергаются опасности воздействия на них едкого калия или натрия высокой концентрации. В то же время детали эти должны обладать высокой электропроводностью. Лучшего материала для них, чем серебро, обладающее устойчивостью к щелочам и замечательной электропроводностью, не [c.279]

    В гальванических элементах и аккумуляторах электрическая энергия получается в результате химических реакций, протекающих в них. Гальванические элементы обычно имеют малую э. д. с. (1,1—1,5 в) и могут давать небольшие количества электроэнергии (от 5 до 250 вт-ч). Аккумуляторы имеют напряжения свинцовый, примерно 2,7—2,8 в, щелочной 1,8 в. Сила тока в аккумуляторах зависит от размеров электродов и количества электролита. [c.10]

    Микропористые сепараторы, широко применяемые в свинцовых аккумуляторах, в щелочных ламельных аккумуляторах пока не используют. Микропористые сепараторы имеют большее электрическое сопротивление, чем перечисленные выше разделители и стоят дороже. Кроме того, и без них при достаточном зазоре между пластинами можно избежать коротких замыканий. Губчатые осадки на ребрах отрицательных электродов здесь почти не образуются, а ламели удерживают активные массы от сильного оплывания. Ограниченное количество шлама успевает упасть на дно. Для того чтобы при сборке батарей стальные сосуды не контактировали друг с другом, аккумуляторы укрепляют в рамках с помощью изолированных цапф, либо на них надевают резиновые изоляционные мешки. Существуют ламельные аккумуляторы в пластмассовых сосудах. В табл. 44 приведены общие характеристики некоторых ламельных аккумуляторов. [c.495]

    Аккумулятором электрической энергии называется такое устройство, с помощью которого можно создавать запас энергии с возможностью использования ее в нужный момент. Проводя электролиз н превращая электрическую энергию в химическую энергию продуктов электролиза, можно, когда потребуется, вновь получить ее обратно, если использовать эту цепь в качестве гальванического элемента. Наибольщее распространение имеют два вида аккумуляторов — свинцовый и щелочной. [c.335]


    Режим импульсного подзаряда характерен тем, что величина тока ИЗТ устанавливается в зависимости от напряжения буферной батареи, тем самым поддерживаются постоянными напряжения на зажимах батареи (2,1. .. 2,2 В на аккумулятор для стационарных кислотных батарей и 1,50. .. 1,6 В на аккумулятор для щелочных батарей). На рис. 97 изображена принципиальная электрическая схема выпрямительного устройства (ВУ) для буферной работы в режиме импульсного подзаряда [18]. Если в процессе разряда на нагрузку напряжение, например кислотной батареи, упадет ниже 2,1 В на аккумулятор, реле контроля напряжения (РКН) отпускает якорь, выключает реле зарядного тока (РЗТ) и его контакты замкнут накоротко резистор / < , что приведет к увеличению тока в управляющей обмотке (УО) дросселя насыщения (Др). Это приводит к возрастанию напрян<ения ВУ. В результате ток ВУ превысит ток нагрузки и за счет избытка тока батарея начнет заряжаться. Когда [c.126]

    Тогда при коротком замыкании электродов с помощью проводника первого рода из-за разности величин электродных потенциалов ячейка работает самопроизвольно - в цепи течет ток, т.е. выделяется электрическая энергия. Это происходит до тех пор, пока потенциалы электродов не достигнут одинаковых значений. Поэтому такие элементы могут служить источником постоянного тока (например, сухие батареи, кислотные и щелочные аккумуляторы и др.). Подобные электрохимические ячейки принято называть гальваническими элементами, разность потенциалов электродов в которых представляет собой электродвижущую силу (э.д.с.) элемента. [c.125]

    Параллельно с усовершенствованием первичных источников тока проводились работы по созданию электрических аккумуляторов. Первый аккумулятор с кислым электролитом был построен Планте в 1860 г. Позднее появились щелочные аккумуляторы. [c.13]

    Электрические характеристики щелочных аккумуляторов [c.88]

    На процессах окисления — восстановления основана работа широко распространенных химических источников электрического тока — свинцового и щелочного аккумуляторов. Это также гальванические элементы, но материалы в них подобраны с таким расчетом, чтобы была возможна максимальная обратимость процесса, иными словами, чтобы многократное повторение циклов зарядки и разрядки совершалось без необходимости добавления участвующих в их работе веществ. В настоящее время аккумуляторы получили широкое разнообразное применение в различных областях народного хозяйства. Они являются необходимой принадлежностью всех машин, на которых установлены двигатели внутреннего сгорания. Шахтные электровозы, грузовые электрокары, подводные лодки также работают на использовании свинцовых аккумуляторов. Не менее широкое распространение имеет свинцовый аккумулятор и в повседневной лабораторной практике, так как является дешевым и удобным источником тока. [c.271]

    Электродвижущая сила железо-никелевого аккумулятора составляет обычно 1,33—1,35 в. Эти аккумуляторы более удобны в обращении. Однако они обладают более низким коэффициентом отдачи — отдают в форме электрического тока приблизительно лишь 50% энергии, поглощенной при зарядке. Найдено, что прибавка ЫОН к электролиту улучшает работу щелочного аккумулятора. [c.355]

    Никель образует оксиды, аналогичные оксидам кобальта. Полутораокись никеля при нагревании выше 300—400° С разлагается, переходя сначала в N 304, а затем в NiO. Являясь сильным окислителем, N 203, а также Ni(0H)3 применяются в щелочных аккумуляторах. Гидроксид никеля (HI) получают окислением на аноде (в процессе зарядки), обратный процесс сопровождается выделением электрической анергии  [c.130]

    Задачи электрохимической промышленности весьма многочисленны и разнообразны. Важнейшими йз них являются 1) рафинирование цветных и благородных металлов, 2) получение цветных металлов из руд, 3) получение щелочных, щелочноземельных и других легких металлов, 4) получение металлических сплавов, 5) получение хлора и щелочей, водорода и кислорода, 6) получение неорганических солей и окислителей, 7) декоративные покрытия металлами, 8) защита металлов от коррозии, 9) изготовление металлических копий с неметаллических образцов, 10) изготовление электрических аккумуляторов и других гальванических элементов. [c.10]

    Гидроксиды Со + и Со в зависимости от образования аквакомплексов и количества гидратирующих молекул воды изменяют свою окраску с розовой на синюю. Гидроксиды Ni + и Ni + обладают различной устойчивостью, и это широко используется в технике (с. 293), так как на окислительной способности Ni основано действие щелочных аккумуляторов. Гидроксид Ni(0H)2 окисляется как электрическим током на аноде, так и свободными галогенами  [c.384]

    Значительное место в достижениях отечественной электрохимии занимают работы но химическим источникам тока усовершенствованы марганцевые, щелочные и свинцовые аккумуляторы, созданы серебряно-цинковые и многие другие элементы и аккумуляторы, топливные элементы, позволяющие осуществлять непосредственное преобразование химической энергии в электрическую. [c.62]


    Книга является общим курсом технологии электрохимических производств. В первой части излагается технология химических источников электрической энергии — гальванических элементов, свинцовых и щелочных аккумуляторов. Вторая часть посвящена электрокинетическим процессам, технологии электролитических производств водорода и кислорода, хлора и щелочей, а также продуктов окисления и восстановления. В третьей части разбираются вопросы электрометаллургии и гальванотехники. [c.2]

    В 1860 г. был предложен первый электрический аккумулятор с кислым, а в 1900 г. со щелочным электролитом. [c.14]

    Аккумуляторами или вторичными элементами называются гальванические элементы, в которых вещества, израсходованные при разряде, регенерируются при обратном пропускании электрического тока. В соответствии с этим, очевидно, все обратимые гальванические элементы могут принципиально служить электрическими аккумуляторами. Однако практическое применение в качестве аккумуляторов имеют немногие из них. Техническую ценность имеют лишь те элементы, электролит которых состоит из одной жидкости, а в результате токообразующей реакции на электродах образуются твердые, практически нерастворимые вещества. В настоящее время большое практическое значение имеют только аккумуляторы двух типов — свинцовые и щелочные. [c.81]

    Одной из самых важных и интересных проблем технологии химических источников электрической энергии является создание аккумуляторов с большой удельной емкостью. Известным успехом в этом направлении можно считать разработку щелочных аккумуляторов. [c.140]

    А. Теория и электрические характеристики щелочных аккумуляторов [c.140]

    Свет шахтера . Лампы (рис. 1У-34) состоят из головки из прочного стекла 4 с электрической лампочкой 5 внутри и металлического корпуса 1 со щелочным аккумулятором 2. Лампочка включается поворотом головки по часовой стрелке. Крышка 3 корпуса лампы снабжена магнитным затвором 6, препятствующим открытию лампы, что в загазованном помещении меняет привести к взрыву. Открыть затвор можно только при помощи электромагнита. [c.138]

    Применяют для получения туалетных мыл, некоторых красителей и органических соединений, а также в бумажной, нефтяной и металлургической промышленности, в медицине, для щелочных электрических аккумуляторов и др. [c.108]

    Принципиальная компенсационная схема для измерения э. д. с. гальванического элемента приведена на рис. 28, а. Источник тока Б (обычно кислотный или щелочной аккумулятор или высокоемкостный сухой гальванический элемент на 1,56—1,66 В) присоединен к концам А п В электрического сопротивления (или просто сопротивление) Rab- Выбирают источник тока с учетом того, что по принципу компенсационного метода э. д. с. испытуемого гальванического элемента должна быть меньше э. д. с. источника тока ЕБ Считают, что возникающее на концах сопротивления А yi В напряжение Vab незначительно отличается от напряжения на клеммах источника тока. Цепь АБВ называют большой или цепью главного питания. Между клеммой А и нуль-инструментом Г включают переключателем П испытуемый гальванический элемент с . Для кратковременных включений служит ключ К, который соединен одним концом с подвижным контактом Д, снимающим различное напряжение, а другим с нуль-инструментом Г. Цепь АхД называют малой или боковой. Замыкают собранную электрическую цепь одним легким кратковременным нажимом на головку ключа. Передвижением контакта Д вдоль сопротивления подбирают такое положение контакта, при котором ток в малой цепи практически отсутствует. Точку компенсации проверяют передвижением контакта влево и вправо от нее по сопротивлению на возможно меньшую, по равную величину так, чтобы индикатор нуля на н у л ь - и 1 с т р у м е н т е отклонялся от нулевого положения в разных направлениях на одинаковую величину. Компенсация означает, что падение на-прял<ения па участке АД (ua/i) равно э. д. с. испытуемого гальванического элемента. [c.137]

    Во время зарядки обычного щелочного аккумулятора на его аноде образуется некоторое количество кислорода, а на катоде после окончания зарядки — водород. Однако выделение газа может быть устранено соответствующей конструкцией аккумулятора или с помощью химических катализаторов. 0 дает возможность получать герметически закрытые сухие аккумуляторы. Элемент изготавливается таким образом, чтобы емкость отрицательного электрода была намного больше емкости положительного тогда зарядка положительного электрода заканчивается гораздо раньше, чем отрицательного, последний остается частично незаряженным, и выделения водорода не происходит. Выделение кислорода на аноде в результате таких мер не уменьшается, но образование пузырьков газа можно предотвратить. Так как электроды расположены очень близко друг к другу и аккумулятор содержит лишь минимум электролитной жидкости, необходимой для пропитывания пор электродов и находящихся между ними пористых пластин, то образованный при зарядке кислород в растворенном состоянии легко диффундирует к отрицательному электроду и окисляет его. Этот процесс может быть ускорен с помощью катализаторов. Окисленная часть отрицательного электрода снова восстанавливается зарядным током. В этих условиях нэт необходимости прерывать процесс зарядки для уменьшения газовыделения — газ не выделяется, даже если зарядный ток не выключают. С экономической точки зрения перезарядка, конечно, означает потерю энергии, ибо после каждого восстановления положительного электрода выделяющийся на одном электроде кислород с помощью зарядного тока снова переводится в раствор на другом электроде. Таким образом, этот ток вызывает ненужный процесс. Однако у маленьких аккумуляторов стоимость потраченной напрасно электрической энергии с избытком возмещается тем удобством, что процесс зарядки не нуждается в контроле. [c.224]

    Отчет должен содержать задание изложение теории щелочного аккумулятора с окисно-никелевым электродом техническое описание аккумулятора электрическую схему и описание хода выполнения работы опытные и расчетные данные в виде таблиц и графйков, а также распшфрованные диаграммы напряжение — время , снятые с самопишущего вольтметра краткое обсуждение полученных результатов. [c.211]

    Компенсационный метод измерения свободен от этих недостатков. Компенсационная схема для измерения э.д.с. гальванического элемента приведена на рис. IX. 15. В цепь ЛВАк — цепь источника тока, которыми обычно служат кислотный или щелочной аккумулятор или сухой гальванический элемент большей электрической емкости,— последовательно включается переменное сопротивление Я, соизмеримое с сопротивление реохорда АВ. В простейшем случае он представляет собой проволоку с относительно большим удельным сопротивлением (нихром), туго натянутую вдоль градуированной линейной шкалы. Падение напряжения на единице длины шкалы стандартизируется с помощью нормального элемента Вестона (НЭ)  [c.555]

    Характерное для НЖ-аккумулятора высокое внутреннее омическое сопротивление объясняется как относительно низкой электрической проводимостью активных масс, заключенных в ламе.ли, так и своеобразием конструкции самих ламелей. Площадь перфорации ламелей не превышает 18 % от их полной поверхности. Поэтому именно омическое падение напряжения в электродах определяет заметное снижение разрядного напряжения по мерс увеличения разрядного тока. Ощутимое уменьшение разрядной емкости связано также с пассивируемостью железного электрода. Недостатком НЖ-аккумуляторов является высокий саморазряд, составляющий 50—80 % в месяц, что связано с электрохимической неустойчивостью железа в щелочном электролите, а также с наличием примесей в активной массе и электролите. [c.222]

    Применение щелочных металлов в качестве отрицательных электродов источников тока всегда представлялось заманчивым из-за высокого отрицательного потенциала и больших токов обмена. Однако в водных растворах использование щелочных металлов связано с чрезвычайно большими трудностями. В современных вариантах источников тока со щелочными металлами применяют расплавы солей, органические растворители (апротонные растворители) или твердые электролиты. Наиболее перспективны две последние группы источников тока. В химических источниках тока с апротонными растворителями в качестве анода используют литий, что позволяет достигать значительных ЭДС (до 3—4 В) и высоких значений удельной энергии. В качестве материала катода применяют галогениды, сульфиды, оксиды и другие соединения. Особый интерес представляют катоды ща основе фторированного углерода. Это вещество нестехиометрического состава с общей формулой ( F r)n получают при взаимодействии углерода с фтором при 400—450 °С. При работе такого катода образуются углерод и ион фтора. Разработаны литиевые источники тока с жидкими окислителями (системы SO b — Li и SO2 — Li). Предпринимаются попытки создания аккумуляторов с использованием литиевого электрода в электролитах на основе апротонных растворителей. Литиевые источники тока предназначаются в основном для питания радиоэлектронной аппаратуры, кардиостимуляторов, электрических часов и т. д. [c.266]

    Полезное применение явления поляризации находят для целей накопления электрической энергии. Используемые для этого в технике усггройства называются аккумуляторами. Их употребление целесообразно, если они имеют высокий к. п. д., большую энергоемкость при малой массе и компактность. Этим требованиям удовлетворяют только свинцовые (кислотные) и никелевые (щелочные) аккумуляторы, а также разработанные в последнее время особенно энергоемкие цинк-серебряные и никель-кадмиевые. Последние в сочетании с солнечными батареями составляют бортовую энергетику космических кораблей. [c.195]

    Благодаря большому сечению захвата тепловых нейтронов кадмием пз нето изготовляют регулирующие стёрж н и в атом]Тых реак-торах. Важнейшее применение кадмия — про11зводство щелочных аккумуляторов (кадмиевые электроды). Кадмиевая бронза применяется для изготовления телеграфных и телефонны.х проводов, так как по сравнению с чистой медью она обладает большей прочностью, износостойкостью при несколько пониженной электрической проводимости. Ртуть (ртутные катоды) применяют при получении гидроксида натрия и хлора, а также для комплексной переработки полиметаллического сырья (амальгамная металлургия). Кроме того, ртуть используют в ядерных реакторах для отвода теплоты. [c.137]

    Рассчитайте падение напряжения в электролите межэлектродного пространства щелочного аккумулятора типа НЖ-22, имеющего две положительные пластины габаритами 140 x 95 мм и три отрицательные пластины габаритами 145х Х99,5 мм при разрядном токе 22 А. Межэлектродное расстояние 1,2 мм. Электролит—раствор КОН, плотностью 1,20 (21,15%-ный раствор КОН) с удельной электрической проводимостью Хи 0,520 См-см- . [c.71]

    Преимущества свинцового аккумулятора — большая электрическая емкость, устойчивость в работе, большое количество циклов (разрядка — зарядка). Недостатки — большая масса, и следовательно малая удельная емкость, выделение водорода при зарядке, негерметичность при наличии концентрированного раствора Н2504. В этом отношении лучше щелочные аккумуляторы. [c.253]

    Концентрационные цепи без переноса могут быть использованы для определения чисел переноса ионов и диффузионных потенциалов. Они незаменимы во всех случаях, когда в потенциометрических измерениях необходимо устранить ошибки, вносимые в измерение э. д. с. диффузионным потенциалом. Большое применение такие элементы нашли также и в технике. Главная область использования элементов без переноса ионов — производство химических источников электрической энергии. Для этой цели преимущественно используют щелочные и свинцовые аккумуляторы, а также цинкдвуокисномар-ганцевые и свинцовые, окисномедные, цинкугольные, магнийсеребряные и другие гальванические элементы, которые работают с одним раствором электролита, т. е. при отсутствии диффузионных потенциалов. [c.189]

    Помимо окисления Ы1(ОН)г чисто химическим путем, перевод его в гидроксид может быть достигнут электроокислением в щелочной среде. Процесс этот, наряду с использованием для обратного получения электрического тока сильных окислительных свойств Ы (ОН)з, лежит в основе действия т.н. щелочного аккумулятора. Последний содержит один электрод, сформованный нз порошка металлического Ре, другой — из гидроксида никеля. Э.пектроды опущены в раствор КОН. Процессы при разрядке и зарядке могут быть переданы схемой [c.448]

    Основная часть никеля (85—87%) расходуется на производство сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используют в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. Никель применяется в производстве щелочных аккумуляторов и в гальванотехнике. В 1980 г. производство никеля составило в капиталистических и слаборазвитых странах около 1 млн. т, в ближайшие 7—10 лет оно возрастет еще на 7% в год. [c.403]

    Приборы системы ИКХХВ АН УССР. Прибор для контроля осветления воды в отстойниках АОВ-1 работает на принципе турбиди-метрии — поглощения света суспензиями, образующимися при очистке воды, Прибор состоит из первичного датчика и вторичного прибора. В герметических камерах первичного датчика помещены фотоэлемент и освещающая его электрическая лампочка. Датчик снабжен кабелем, по которому осуществляется передача ЭДС от фотоэлемента к вторичному прибору, а также подвод тока к лампочке. Этот кабель служит тросом, на котором датчик опускается в отстойник. Во вторичном приборе размещен источник питания (батарея щелочных аккумуляторов) и магнитоэлектрический вольтмикроамперметр. [c.834]

    Электродвижущая сила такого аккумулятора равна 1,33—l,35iS. Преимуществами щелочных аккумуляторов по сравнению со свинцовым является меньший вес, больший срок службы и простота ухода, а недостатками — значительное уменьшение напряжения по мере разрядки и более низкий коэффициент отдачи при работе они отдают в форме электрического тока лишь около половины того количества энергии, которое они поглотили при зарядке, так как остальная часть ее расходуется на побочные процессы. [c.306]


Смотреть страницы где упоминается термин Аккумуляторы электрические щелочные: [c.16]    [c.9]    [c.174]    [c.370]    [c.89]   
Технология электрохимических производств (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аккумуляторы

Аккумуляторы щелочной

Аккумуляторы электрические

Аккумуляторы электрические аккумуляторы

Теория и электрические характеристики щелочных аккумуляторов

Электрические характеристики щелочных аккумуляторов



© 2025 chem21.info Реклама на сайте