Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические системы цепи

    Из обратимых электродов (полуэлементов) могут быть составлены обратимые электрохимические системы, называемые электрохимическими цепями (парами, гальваническими элементами). Различают два основных вида электрохимических цепей — химические и концентрационные. [c.487]

    Химические цепи имеют большое практическое значение. Разнообразные химические источники тока — первичные (гальванические элементы) и вторичные (аккумуляторы) — представляют собой химические цепи. Рассмотренная водородно-кислородная, цепь является одним из видов так называемых топливных элементов. Такие элементы представляют собой электрохимические системы, которых протекает реакция окисления топлива или продуктов его переработки (водорода, оксида углерода, водяного газа и др.). Элементы характеризуются высоким коэффициентом использования топлива (70—80%) по сравнению с 30—40% теплосиловых установок, производящих электроэнергию. Несмотря на то что при создании топ- [c.488]


    Химические цепи. В зависимости от природы н свойств электродов, из которых составлена электрохимическая система, различают химические и концентрационные цепи. В химических цепях электроды отличаются друг от друга химическими свойствами. [c.280]

    Из схемы, приведенной на рис. 2, следует, что истинная электрохимическая система представляет собой цепь из последовательно включенных проводников первого и второго рода. С этой точки зрения электрический разряд в газах не может быть назван чисто электрохимическим процессом, так как газы в таких условиях обладают смешанной электронно-ионной проводимостью, и многие фундаментальные законы электрохимии к ним неприменимы. [c.14]

    В электрохимических системах происходит взаимное превращение энергии химических реакций в электрическую энергию и обратно. Применение законов термодинамики к электрохимическим системам позволяет рассчитать значения равновесных электродных потенциалов и э. д. с. электрохимических цепей. Для обратимой реакции [c.476]

    В рассмотренном примере электрохимической концентрационной цепи первой группы граница непосредственного контакта растворов отсутствует — растворы соединены через солевой мост (см. 173). Но если эти два раствора привести в соприкосновение, то на границе их раздела происходит прямой перенос ионов из одщ)го раствора в другой, что влияет на величину э. д. с. цепи. Такие электрохимические системы называются концентрационными цепями с переносом. В качестве примера рассмотрим цепь, электроды которой обратимы относительно катиона  [c.490]

    С учетом конкретного вида кинетических коэффициентов эквивалентная рассматриваемой электрохимической системе цепь переменного тока может быть представлена в форме, показанной на рис. 26. Связь между параметрами этой цепи и кинетическими [c.72]

    Так как в реальном процессе переноса элементарного заряда из одной фазы в другую химическая и электрическая работы совершаются одновременно, то определить можно лишь общий энергетический эффект, отвечающий изменению электрохимического потенциала, но не отдельные его слагаемые. Поэтому найти экспериментально абсолютную разность электрических потенциалов (или скачок потенциала между двумя разными фазами) до сих пор не удалось. Э.д.с. электрохимической системы Е, напротив, можно непосредственно измерить она л.олжна, следовательно, отвечать разности потенциалов между двумя точками, лежащими в одной и той же фазе. Этими точками (см. рис. 7) могут быть точки Ь н д, находящиеся в одном н том же металле, или точки а и г, расположенные в вакууме вблизи поверхности металла. На рис, 7 изображена правильно разомкнутая электрохимическая цепь, на двух концах которой находится один и тот же металл. Если считать э,д.с. положительной величиной, то положительное электричество [c.30]


    Глава 9. Электрохимические системы. Электрохимические цепи [c.192]

    Глава 9. Электрохимические системы. Электро>имические цепи 195 [c.195]

    Имеются, однако, электрохимические системы, например, простои . химическая цепь с газовыми электродами [c.213]

    Если электрохимическая система работает как источник электрического тока (гальванический элемент, аккумулятор), поляризация электродов приводит к снижению напряжения на его клеммах. Допустим, что электродам электрохимической цепи в равновесном состоянии свойственны процессы  [c.516]

    Под электрохимической системой следует понимать такую, в которой совершаются взаимные превращения химической и электрической форм энергии. Простейшая электрохимическая система состоит из двух электродов, опущенных в электролит и соединенных между собой металлическим проводником (рис. 84). Следовательно, электрохимическая система включает в себя фазы различной физико-химической природы электроды и внешняя цепь— твердые фазы, электролит — твердую либо жидкую фазу и, наконец, газ, граничащий с электродами и электролитом, — газовую фазу. На границе раздела фаз различной природы возникают скачки потенциалов. [c.412]

    Пока не удалось определить скачок потенциала между двумя различными фазами, т. е. абсолютную разность электрических потенциалов, но можно измерить э. д. с. электрохимической системы Е, например, между точками Ь и д, расположенными в металлах М г и М2, и между точками а и г, находящимися в вакууме около поверхности указанных металлов. На рис. 84 показана правильно разомкнутая электрохимическая цепь, э. д. с. которой считается положительной, если электрический ток течет против часовой стрелки, и отрицательной, если электрический ток течет по часовой стрелке. Очевидно, что суммарная э. д. с. любой электрохимической системы равна сумме скачков потенциалов на границах фаз следовательно, электродвижущая сила электрохимической цепи, изображенной на рис. 84, [c.413]

    Электрохимические системы различаютси ие только по природе совершающихся в 1ГЯХ процессов (физические, концентрационные и химические цепи), ио и по их действию. Так, например, химические системы, являющиеся основой построения химических источников электрпчес1- ой энергии, или, как их чаще называют, химических источников тока (ХИТ), разделяются по этому принципу на три группы. [c.207]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —М1 (точки 1—2) М1 —Мц (точки [c.469]

    Все электрохимические реакции происходят при протекании электрического тока в цепи. Эта цепь слагается из последовательно соединенных металлических проводников и раствора (или расплава) электролита. В металлических проводниках переносчиками тока являются электроны, в растворах электролитов — ионы. Непрерывность протекания тока в цепи обеспечивается только в том случае, если происходят процессы на электродах, т. е. на границе металл — электролит. На одном электроде происходит процесс приема электронов — восстановление, на другом электроде — процесс отдачи электронов — окисление. Особенностью электрохимических процессов в отличие от обычных химических является пространственное разделение процессов окисления и восстановления. Из этих со1р)яженных процессов, которые не могут происходить один без другого, и слагаются в целом химические процессы в электрохимических системах. [c.314]

    В химических цепях источником электрической энергии является свободная энергия химической реакции, протекающей в электрохимической системе. Уже рассмотренная цепь типа (П) обобщает свойства химических цепей без переноса. Один из электродов таких цепей должен быть обратимым по катиону, а другой — по аниону. Следующие примеры иллюстрируют различные комбинации электродов при построении таких цепей амальгамный электрод — электрод 2-го рода  [c.127]

    Электрохимическая система, производящая электрическую энергию за счет протекающих в ней химических превращений, называется химическим источником тока или гальваническим элементом (рис, 2, б). Здесь электрод, пос1>1лающий электроны во внешнюю цепь, называется отрицательным электродом или отрицательным полюсом элемента. Электрод, принимающий электроны из внешней цепи, называется положительным электродом или положительным полюсом элемента. [c.13]


    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —Mi (точки 1—2) Mi —Мц (точки 3—4) Мц —раствор L (точки 5-—б) раствор L —Mi (точки 7—8) Mi —вакуум (точки 9—10), где М —металл. Потенциал х. отвечающий работе переноса элементарного положительного заряда из глубины фазы в точку в вакууме, расположенную в непосредственной близости к поверхности фазы, называется поверхностным. В рассматриваемой. цепи поверхностные потенциалы возникают между точками / и 2, а также 9 и 10. Разность внутренних потенциалов соседних фаз называется гальвани-пот нциалом. В цепи, представленной на рис. 169, гальвани-потенциалы возникают на границах фаз точки 3—4-, точки 5—6 точки 7—S. Э. д. с. этой цепи представляет собой сумму скачков потенциалов  [c.469]

    Скачки потенциала между фазами не поддаются экспериментальному определению. Поскольку э. д. с. электрохимической системы может быть легко измерена, то принято электродный потенциал считать равным э. д. с. цепи, составленной из водородного (слева) и данного электрода (справа). Водородный электрод при этом взят в стандартном состоянии (ан+ = 1) парциальное давление газа равно нормальному атмосферному давлению (1,013 10 Па) и его потенциал при любой температуре условно принят нулю. Электродные потенциалы при этом выражают в условной водородной шкале. Э. д. с. правильно разомкнутой цепи M Pt, HalLjM соответствует электродному потенциалу системы L M, для которого примем обозначение фьм  [c.469]

    Из уравнения (175.10) видно, что электрическая работа цепи в общем случае не соответствует тепловому эффекту реакции. Если Е/кт < О, то электрическая работа меньше энергии химического процесса, электрохимическая система отдает теплоту в окружающую среду или нагревается в условиях тепловой изоляции. Примером такой системы служит цепь РЬ, Pb l2l Г Ag l, Ag, для которой <1Е/(1Т=—1,86 10 В/К. При ёЕШТ > О электрическая работа системы больше энергии химической реакции недостаток энергии [c.477]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии совершается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металл1 ческий проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]

    Будем рассматривать только самопроизвольно протекающие химические реакции, для которых Е>0. Электрохимические цепи такого вида называют гальваническими элементами. Если <1 /с17 <0, то химическая реакция, протекающая в гальваническом элементе, может быть только экзотермической (АЯсО). Поскольку при ее протекании энтропия уменьшается (Д5<0), то работа гальванического элем та должна сопровождаться выделением теплоты. Следовательно, в условиях теплоизоляции электрохимическая система будет нагреваться. Таким образом, при работе гальванического элемента в условиях йЕ/йТ<0 за счет убыли энтальпии совершается электрическая работа пЕЕ и выделяется теплота в количестве пРТ АЕ/АТ. Если АЕ/йТ= = 0, то реакция также может быть только экзотермической (АЯ<0). Так как А5=0, то работа гальванического элемента, совершаемая за счет убыли энтальпии, не должна сопровождаться тепловыми эффектами. Если с1 /с17>0, то протекающая в гальваническом элементе химическая реакция сопровождается ростом энтропии А5>0. Поэтому при работе такого элемента происходит поглощение теплоты из окружающей среды. Если же электрохимическая цепь изолирована, то она охлаждается. При условии АЕ/йТ О химическая реакция в элементе может быть как экзотермической, так и эндотермической. Если АЯсО, то электрическая работа совершается за счет убыли энтальпии и за счет энтропийного члена 7 d /d7 >0. Если АЯ=0, то электрическая работа совершается только за счет роста энтропии в системе. Обычный путь использования химической энергии реакции через выделяющуюся теплоту здесь невозможен, так как тепловой эффект равен нулю. Наконец, если реакция эндотермическая (АЯ>0), но ТАЕ/йТ>АН/пР, то согласно уравнению (VI.24) от гальванического элемента можно получить работу. В этих условиях за счет энтропийного фактора (т. е. за счет роста энтропии системы) не только совершается электрическая работа, но и увеличивается энтальпия системы. Электрохимические цепи, от- [c.121]


Смотреть страницы где упоминается термин Электрохимические системы цепи: [c.4]    [c.478]    [c.516]    [c.478]    [c.516]    [c.146]    [c.155]    [c.146]    [c.109]    [c.110]    [c.120]   
Теоретическая электрохимия (1965) -- [ c.3 , c.11 , c.12 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.11 , c.13 , c.145 ]

Теоретическая электрохимия Издание 3 (1975) -- [ c.9 , c.16 , c.189 , c.205 , c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Электрохимическая цепь

Электрохимические системы с химической реакцией (химические цепи)

Электрохимические системы цепи аллотропические

Электрохимические системы цепи амальгамные

Электрохимические системы цепи анионные

Электрохимические системы цепи без переноса сдвоенные, без

Электрохимические системы цепи газовые

Электрохимические системы цепи гравитационные

Электрохимические системы цепи жидкостной границы

Электрохимические системы цепи катионные

Электрохимические системы цепи классификация

Электрохимические системы цепи концентрационные

Электрохимические системы цепи необратимые

Электрохимические системы цепи обратимые

Электрохимические системы цепи принципы классификации

Электрохимические системы цепи равновесные обратимые и неравновесные необратимые

Электрохимические системы цепи с переносом жидкостной границей

Электрохимические системы цепи скачки потенциала

Электрохимические системы цепи составные части

Электрохимические системы цепи термогальванические

Электрохимические системы цепи термодинамика

Электрохимические системы цепи условия равновесия

Электрохимические системы цепи фазовый состав

Электрохимические системы цепи физические

Электрохимические системы цепи химические

Электрохимические системы цепи химические простые

Электрохимические системы цепи химические сдвоенные

Электрохимические системы цепи химические сложные

Электрохимические системы. Электрохимические цепи

Электрохимические системы. Электрохимические цепи



© 2024 chem21.info Реклама на сайте