Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфитоксидаза

    В пятом периоде периодической системы только молибден н иод обладают четко выраженными биологическими функциями. Молибден активирует ксантиноксидазу и альдегидоксидазу вероятно, он входит в состав связывающего центра нитратредуктузы и сульфитоксидазы. Механизм, с помощью которого молибден связывает субстрат и участвует в каталитической стадии ферментативной реакции, далеко еще не выяснен. Модельные эксперименты с комплексами молибден — цистеин как будто указывают на возможную связь молибдена с серой в его ферментных комплексах. Все три вышеназванных фермента содержат также флавины [Р1], хотя молибден, по-видимому, не связан с ними непосредственно. [c.365]


    Уже давно признано, что молибден относится к элементам, необходимым растениям для роста, однако никаких убедительных данных об обязательном его присутствии в пище животных пока не получено. Тем не менее он обнаружен по крайней мере в трех ферментах животных и, кроме того, еще в четырех ферментах бактерий и растений - . Альдегидоксида-за, ксантиноксидаза печени (т. 2, стр. 265) и родственные ксантиндегидрогеназы некоторых бактерий содержат молибден, существенный для проявления каталитической активности. Сульфитоксидаза печени (гл. 14, разд. Ж), нитратредук-таза бактерий растений (гл. 10, разд. Е.2), бактериальная формиатдегидрогеназа (гл. 9, разд. В, 3) и нитрогеназа (данный раздел книги) — вот список известных ферментов, активность которых зависит от присутствия молибдена. [c.85]

    Точный механизм участия молибдена в катализе неизвестен. Состояния Мо(1П) и Mo(V) парамагнитны, но легко регистрируемые ЭПР-сигналы отвечают лишь состоянию Mo(V). Этот сигнал легко распознать по его характерной сверхтонкой структуре, содержащей шесть линий. Такой сигнал был зарегистрирован в случае ксантиноксидазы, нитратредуктазы и сульфитоксидазы при их взаимодействии с субстратами. Однако нитрогеназа дает только сигналы ЭПР, характерные для железа. Более того, нет никаких данных, из которых следовало бы, что N2 в нитрогеназе реагирует непосредственно с атомами молибдена. Тем не менее заманчиво предположить, что присутствие молибдена в нитрогеназе связано со способностью Mo(VI) акцентировать три электрона с образованием Мо(П1). Два атома Мо(П1), отдавая далее по три электрона, могли бы доставить те шесть электронов, которые нужны для осуществления реакции (14-10). [c.86]

    С молибденом в организме может конкурировать вольфрам. Так, у крыс, получающих с пищей вольфрам в количестве 100 ч. на млн., образуется вольфрамсодержащая сульфитоксидаза, которая уже неспособна нормально функционировать. Однако при этом в еще больших количествах накапливается не содержащий металла апобелок. У этих крыс образуется также и неактивная, не содержащая металла ксантиноксидаза . Очевидно, вольфрам каким-то образом препятствует включению молибдена в молекулы ферментов. Большая часть молибдена в азотфиксирующих бактериях Azotoba ter находится в специальном белке, предназначенном для накопления молибдена.  [c.86]

    Есть еще реакция, которая у животных обычно играет подчиненную роль, ио может приобретать важное значение при недостатке сульфитоксидазы окислительное слияние двух молекул сульфита в тиосульфат (реакция р, рис. 14-15). Тиосульфат участвует в одной интересной реакции — фермент со странным названием роданеза, найденный в печени, катализирует вытеснение сульфит-иона из молекулы тиосульфата цианид-ионом [уравнение (14-39)]. Реакция приводит к детоксикации циа-ннд-нонов. [c.135]

    Окисление сульфита в сульфат осуществляется сульфит-цитохром с — редуктазой [сульфитоксидазой уравнение (10-28), стадия д -или идет через образование адеиилилсульфата (называемого также адено-зин-5 -фосфосульфатом, сокращенно APS). [c.429]


    Бактерии не единственные организмы, способные окислять восстановленные соединения серы. Например, в печени животных присутствует содержащая молибден сульфитоксидаза (гл. 14, разд. Ж), функция которой, вероятно, состоит в детоксикации двуокиси серы путем окисления сульфита в сульфат [122]. [c.430]

    Установлено, что фиксация происходит и в том случае, когда два белка происходят не только из одного и того же организма, но и из разных организмов. По-видимому, природа создала только один основной механизм фиксации азота, и возможны лишь некоторые вариации на этой основе. Интересно, что нитратредуктаза (NOj - -- N02 ) из Neurospora rassa тоже состоит из двух белков, один из которых содержит молибден, причем этот молибденсодержащий белок можно заменить на другие молибденовые белки (обычно после обработки кислотой), входящие в состав совершенно отличных ферментов, включая ксантин-, альдегид- и сульфитоксидазы, или MoFe-белок нитрогеназы из двух разных бактерий [156]. Пока не появлялись сообщения о реконструкции нитрогеназы из обычного Fe-белка и свободного Мо-белка. В работе [156] было отмечено, что, возможно, существуют молибденсодержащие субъединицы, которые выступают в качестве кофактора и являются общими для всех молибденсодержащих ферментов животных,растений и микроорганизмов. Эти субъединицы, вероятно, не только функционируют как переносчики электронов, но и связывают между собой субъединицы фермента. Если это предположение справедливо, то весьма вероятно, что основную электрон-транспортную реакцию в нитрогеназах осуществляет Мо-белок, тогда как другой белок модифицирует реакцию, приспосабливая ее к определенному субстрату. Таким [c.232]

    Мы подчеркнули важное значение молибдена для растений, однако он входит в состав и некоторых ферментов, содержащихся в животных организмах. Он участвует в окислении пуриновых оснований в мочевую кислоту. Ксантиноксидаза и родственный ей фермент альдегидоксидаза обладают двойственной субстратной специфичностью. Оба эти фермента катализируют окисление многих гетероциклических азотсодержащих соединений, а также альдегидов и, по-видимому, используют кислороде качестве физиологического конечного акцептора электронов. Третий фермент — ксан-тиндегидрогеназа — имеет близкие функциональные свойства, но, вероятно, использует НАД в качестве акцептора электронов. Спектры ЭПР этих молибденсодержащих ферментов существенно различаются. Это может означать, что различия между ферментами, по крайней мере отчасти, определяются тонкими различиями в составе комплекса молибдена, связанного с простетической группой. Сравнительно недавно к списку молибденсодержащих ферментов была добавлена сульфитоксидаза. Наличие в ней молибдена было случайно обнаружено при исследовании методом ЭПР гемового компонента [6. Роль этих ферментов млекопитающих изучена слабо. Однако в литературе описан случай смерти ребенка в возрасте 23 месяцев с нейрологическими и другими патологическими нарушениями, по-видимому связанными с отсутствием в организме сульфитоксидазы [7]. [c.261]

    Известно, что молибден является существенным компонентом шести ферментов альдегидоксидазы, нитратредуктазы, нитрогеназы, сульфитоксидазы, ксантиндегидрогеназы и ксантиноксидазы. Из них четыре содержат флавинадениндинуклеотид (ФАД) (УП), и все шесть содержат железо в виде цитохрома или серусодержа- [c.263]

    В данной главе рассмотрены те свойства соединений молибдена, которые могут оказаться существенными для выяснения электронной структуры и стереохимических свойств комплексов молибдена. Наибольшее внимание будет уделено соединениям молибдена в водных растворах, хотя по последним данным сульфитоксидаза печени крыс локализована во внутримембранном пространстве митохондрий (разд. 14.6), откуда видно, что исследование неводных систем представляет также значительный интерес. Из образуемых молибденом ионов устойчивы в биологическом окружении ионы Мо(П1), Мо(1У) и Мо(У), и они имеют три, два и один -электрон соответственно. Следовательно, эти ионы должны давать в электронных спектрах (1—(1-переходы, их можно обнаружить методом ЭПР, и они могут быть также охарактеризованы статическим парамагнетизмом. Все эти свойства могут быть в принципе использованы для установления природы лигандов, связанных с металлом, окислительного состояния молибдена и стереохимии лигандного окружения. [c.266]

    Катализ неферментативного аэробного окисления сульфита ионами металлов и свободными радикалами, а также его подавление перехватчиками частиц, способных передавать цепи, помогли идентифицировать этот процесс как свободнорадикальную цепную реакцию. В отличие от неферментативных реакций окисление сульфита до сульфата при участии сульфитоксидазы в организмах млекопитающих, растений и бактериях происходит в окружении, содержащем множество веществ, являющихся перехватчиками свободных радикалов. Кроме того, этот процесс идет при концентрациях сульфита, слишком малых для поддержания эффективно распространяющейся цепной реакции. [c.297]

    Сульфитоксидаза была выделена в высокоочищенном состоянии из организмов млекопитающих и птиц [96, 97]. У млекопитающих ее роль состоит, по-видимому, в окислительной детоксикации соединений серы, особенно в окислении двуокиси серы и сульфита до сульфата [98, 99]. Активность фермента из печени крыс была локализована во внутримембранном пространстве митохондрий [100]. Подтверждением важной роли сульфитоксидазы в организме человека является сообщение о ребенке, печень, почки и мозг которого совершенно не обнаружили сульфитоксидазной активности. Этот ребенок умер в возрасте 23 месяцев с признаками ией-рологических и других патологических аномалий [7]. [c.297]


    В ранних работах по сульфитоксидазе имеется некоторая путаница. Сообщения о прямой оксидазной активности и наличии гемовой простетической группы в ферменте из печени, а также о способности бактериальной сульфитоксидазы переносить электроны на кислород то подтверждались 101—103], то опровергались [104— 106]. Позже ситуация в значительной мере прояснилась [109], однако детали механизма окисления сульфита молекулярным кислородом все еще неизвестны. Сульфитоксидаза из бычьей печени очищена до 75%-ной однородности [96]. Этот белок способен передавать электроны от сульфита на такие одноэлектронные акцепторы, как цитохром с и феррицианид, и на такие двухэлектронные акцепторы, как молекулярный кислород, 2,6-дихлорфенол, индофенол и метиле- [c.297]

    Сульфитоксидаза из бычьей печени имеет молекулярный вес 115 ООО и состоит из двух субъединиц молекулярным весом 55 ООО каждая. Удивительное сходство УФ-спектров поглощения восстановленного фермента и восстановленного цитохрома, параллельное обогащение гемом, рост сульфитоксидазной активности в процессе очистки фермента и идентичная миграция гема и ферментативной активности в процессе электрофореза позволяют идентифицировать гем как простетическую группу сульфитоксидазы [108]. Функциональная конгруентность гема и ферментативной активности подтверждается также корреляцией между исчезновением ферментативной активности и утратой гема, восстанавливаемого сульфитом, при тепловой инактивации сульфитоксидазы. Аналитические данные указывают на наличие двух гемовых групп в молекуле сульфитоксидазы. Один из гемов восстанавливается сульфитом с высокой скоростью, а другой существенно медленнее. Интересно, что гем оказывается полностью восстановленным, когда в роли акцептора выступает цитохром с. Было высказано предположение, что одноэлектронные акцепторы взаимодействуют с сульфитоксидазой по центру, предшествующему ге-му. Кроме того, полагали, что перенос электронов от некоторого центра фермента на одноэлектронный акцептор, например на феррицианид, должен идти медленнее, чем перенос электрона от сульфита на этот центр, поскольку стадия, замедление которой тормозит [c.298]

Рис. 43. Спектры ЭПР Мо(У) сульфитоксидазы в присутствии сульфита [109]. Рис. 43. Спектры ЭПР Мо(У) сульфитоксидазы в присутствии сульфита [109].
    В спектрах ЭПР сульфитоксидазы проявляет себя около 50% всего содержащегося в ней молибдена, тогда как в случае ксантиноксидазы — только около 37%. Это различие может определяться большей стабилизацией парамагнитного мономерного состояния в равновесии мономер —димер в случае сульфитоксидазы или более слабым взаимодействием между Мо(У) и другим парамагнитным центром этого фермента. Несмотря на эти количественные различия, спектры ЭПР сульфитоксидазы и ксантиноксидазы во многих отношениях сходны между собой. Спектры ЭПР обоих ферментов обнаруживают двухфазную зависимость от температуры переход в окружении молибдена наблюдается примерно при —113°С. Спектры обоих ферментов зависят от pH, причем в них обнаруживается дублетное расщепление, исчезающее при высоких pH или при замене обычной воды на ОгО (рис. 39 и 43). Это дублетное расщепление, по-видимому, определяется взаимодействием с протоном кислотнодиссоциирующей группы. При более низких значениях [c.299]

    Было показано, что сульфитоксидаза — простейший молибденсодержащий фермент, в состав которого входят только две про-стетические группы — молибденовая и гемовая. Данные спектроскопии ЭПР и результаты ингибиторного анализа показывают, что молибден входит в состав центра, связывающего сульфит, и что металл в этом центре активного фермента находится в состоянии Мо(У). Двухэлектронный окислительный субстрат - молекулярный кислород, вероятно, связывается с гемовой группой, хотя прямых доказательств этого не получено. Сходство в спектрах ЭПР сульфитоксидазы и ксантиноксидазы указывает на общность структуры окружения молибдена в этих двух ферментах. Потребуются дальнейшие эксперименты с сульфитоксидазой того же типа, что и исследования, выполненные методом ЭПР в случае ксантиноксидазы, для того чтобы уточнить пределы аналогии в структуре этих ферментов. Сульфитоксидаза птиц [97] очень близка к сульфитоксидазе из бычьей печени [96]. Анионы подавляют реакции обоих ферментов с одноэлектронными акцепторами. Кроме того, они влияют на седиментационные свойства сульфитоксидазы птиц и на сигнал ЭПР Мо(У). Причины этих эффектов пока неизвестны. [c.300]

    Как и в случае других молибденсодержащих ферментов, имеется досадно мало сведений о структуре сульфитоксидазы. Однако относительная простота этого фермента и его важная физиологическая роль в организме человека делают его весьма перспективным объектом дальнейших исследований. [c.300]

    В СВЯЗИ С проблемой исследования молибденовых ферментов наибольший интерес представляет обнаружение слабого сигнала ЭПР водных растворов Мо(У) и цистеина [П7]. Хотя этот сигнал соответствует менее чем 1% всего молибдена (тогда как в случае ксантиноксидазы и сульфитоксидазы сигнал ЭПР соответствует до 50% молибдена), его появление указывает на возможность равновесия типа диамагнитный димер парамагнитный мономер. Наличием такого равновесия было объяснено несоответствие между величиной сигнала ЭПР и содержанием молибдена в ферментах [61 ]. Стабильность и интенсивность сигнала ЭПР растворов Мо(У) и цистеина критически зависит от концентрации компонентов, pH и природы буфера. В 1 М фосфатном буфере (pH 6) при концентрации Мо(У) 10 М наблюдается слабый неустойчивый сигнал ЭПР [117]. Однако Хуанг и Хэйт [118] получили вполне устойчивый, хорошо разрешенный сигнал ( г = 2,029, = 1,972, == 1,931 Л(9 Мо), 22 = 5,4, уу = 2,4,. гл = 3,4 мТ) при pH 7 —10 в 0,2 М фосфатном буфере при концентрации Мо(У) 10 М. При введении цистеина в раствор Мо(У) наблюдаются два изменения окраски. Сигнал ЭПР появляется при втором переходе. Интенсивность сигнала ЭПР пропорциональна квадратному корню из концентрации молибдена. Эти наблюдения подтверждают, что сначала Мо(У) и цистеин образуют диамагнитный димер, который затем диссоциирует с образованием парамагнитного мономера. С повышением температуры интенсивность сигнала ЭПР уменьша- [c.305]

    Прямые доказательства участия молибдена в связывании субстрата и в каталитической фазе ферментативного цикла получены только для ксантиноксидазы. Отчетливое сходство между параметрами спектров ЭПР и субстратной специфичностью этого фермента и альдегидоксидазы приводит к выводу, что молибден находится и в связывающем центре альдегидоксидазы. Ограниченные данные по ЭПР позволяют предположить, что молибден участвует и в структуре связывающего центра нитратредуктазы из М. (1епИг111сапз, а также сульфитоксидазы млекопитающих и птиц. Исследования молибденовых комплексов как моделей ферментов сосредоточились в основном на комплексах с серусодержащими лигандами, особенно с цистеином, хотя и не получено надежных доказательств того, что в ферментах молибден действительно связан с серой. Молибден-цистеиновый комплекс проявляет редуктазную активность в отношении ряда субстратов, которые в то же время являются и субстратами нитрогеназы, однако в присутствии этих модельных комплексов обнаруживаются лишь следы аммиака от восстановления азота. Модельные комплексы существенно отличаются от ферментов и по количеству молибдена, который проявляет себя в спектрах ЭПР. Спектры ЭПР ферментов соответствуют до 50% общего содержания в них молибдена, тогда как модельные комплексы дают сигнал, соответствующий не более 4% содержащегося в них молибдена. Возможно, что конформация белка в области активного центра фермента стабилизирует каталитически активную мономерную структуру молибденового комплекса. Однако в отсутствие надежных структурных данных все это, как и различные схемы механизма нитрогеназной реакции, не более чем умозрительные предположения. [c.327]

    Сульфитоксидаза (КФ 1.8.3.1), локализованная, очевидно,, между внутренней и наружной мембранами митохондрий, не обнаруживает активности, если митохондрии помещают в среду с высокомолекулярным акцептором — цитохромом с, а не с феррицианидом эти данные свидетельствуют о том, что наружная мембрана является барьером для первого вещества и не препятствует прохождению второго [810]. С другой стороны, 3-гидроксибутиратдегидрогеназа (КФ 1.1.1.30) также не проявляет активности в митохондриях печени крысы, но в этом случае даже и химическая обработка митохондрий дает лишь небольшой эффект чтобы демаскировать фермент, требуется весьма сильное воздействие, например разрушение митохондрий ультразвуком [2744]. Бендолл и де Дюв [351] сравнивали активацию латентных дегидрогеназ из митохондрий с активацией ферментов, находящихся в лизосомах, и пришли к заключению, что имеются два типа активации. Во-первых, может увеличиться проницаемость митохондриальных мембран, так [c.90]

    Сульфитоксидаза печени, окисляющая S0 " до SO4 , локализована в межмембранном пространстве митохондрии. Фермент представляет собой димер двух идентичных субъединиц (мол. масса 57 000), каждая из которых содержит один гем и один атом молибдена. Последний (в форме Мо +) непосредственно принимает электроны от SO -, превращаясь в Мо"+, способный восстанавливать гем. Полностью восстановленный фермент имеет форму Mo +-Fe +, которая легко обнаруживается методом ЭПР. In situ восстановленный фермент передает электроны цнтохрому с, так что отношение Р/О для окисления SO3 составляет единицу. [c.497]


Смотреть страницы где упоминается термин Сульфитоксидаза: [c.135]    [c.135]    [c.532]    [c.169]    [c.354]    [c.263]    [c.264]    [c.271]    [c.293]    [c.297]    [c.298]    [c.299]    [c.300]    [c.498]    [c.87]    [c.106]    [c.290]    [c.324]    [c.326]    [c.421]    [c.497]   
Смотреть главы в:

Методы и достижения бионеорганической химии -> Сульфитоксидаза

Основы биохимии в 3-х томах Т 1 -> Сульфитоксидаза


Метаболические пути (1973) -- [ c.99 ]

Методы и достижения бионеорганической химии (1978) -- [ c.232 , c.261 , c.263 , c.264 , c.271 , c.297 , c.300 ]

Ферменты Т.3 (1982) -- [ c.3 , c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Электронный парамагнитный резонанс сульфитоксидазы



© 2025 chem21.info Реклама на сайте