Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды, восстановление ферментами

    В настоящее время полностью расшифрована аминокислотная последовательность панкреатической рибонуклеазы (она состоит из 124 аминокислотных остатков). Субтилизин гидролизует пептидную связь между 20-м и 21-м аминокислотными остатками рибонуклеазы. Полученный пептид, состоящий из 20 аминокислотных остатков, способен обратимо отделяться от оставшейся части молекулы фермента. Удаление пептида сопровождается утратой активности, а его воссоединение с молекулой — за счет нековалентных связей — приводит к полному восстановлению активности фермента. Далее восстановление четырех дисульфидных связей молекулы рибонуклеазы вызывает полное разворачивание полипептидной цепи фермента. Когда при окислении кислородом дисульфидные связи снова образуются, происходит почти полное восстановление активности фермента. Таким образом, характер складывания полипептидной цепи должен опреде- [c.108]


    Таким образом, результаты этих опытов показывают, что конформация молекулы, обусловливающая ее ферментативную активность, полностью определяется последовательностью аминокислот в полипептидной цепи. Для того чтобы остатки цистеина соединились правильно, пе нужно никакого специального фермента. Образование специфических дисульфидных связей требуется, по-видимому, лишь для стабилизации активной конформации, а не для ее возникновения. В результате восстановления и последующего окисления рибонуклеазы образуется продукт, имеющий ту же ферментативную активность, ультрафиолетовый спектр, характеристическую вязкость, дисперсию оптического вращения и те же иммунологические свойства, что и нативный фермент. Пептидные карты, получаемые после ферментативного расщепления этих двух веществ, также идентичны. Если 6l.i расположение дисульфидных связей в нативной и реконструированной рибонуклеазе было различным, пептиды, содержащие такие связи, не могли бы попасть, на одинаковые места карты. [c.279]

    В определенных условиях молекулу рибонуклеазы можно расщепить с помощью фермента субтилизина. При этом разрывается связь между 20-м (аланин) и 21-м (серии) остатками и образуется два пептида — короткий (называемый 5-пептидом), содержащий 20 остатков, и более длинный (называемый 5-белком) из 104 остатков. Поскольку первый остаток цистеина находится в молекуле на 26-м месте, отщепление 5-пептида, состоящего из 20 первых аминокислотных остатков, равнозначно отщеплению хвоста фермента. По отдельности ни хвост , ни 5-белок не проявляют ферментативной активности, но их экви-молярная смесь активна. Очевидно, несмотря на разрыв связи между 20-м и 21-м остатками, благодаря взаимодействию боковых цепей образуется активная третичная структура. Если, так же как это делалось в случае нативного фермента, восстановить, а затем вновь окислить 5-белок, то получающийся продукт ничем не отличается от первоначального 5-белка. После добавления к реконструированному 5-белку 8-пептида активность в большой степени восстанавливается. По-видимому, правильное образование дисульфидных связей происходит и в отсутствие 5-пептида. Однако он все же несет какую-то определенную функцию, так как в его присутствии уменьшается количество осадка, состоящего, как предполагают, из молекул, связанных поперечными связями. Если опыт по восстановлению и последующему окислению производится с раствором, содержащим как 5-пептид, так и 5-белок, процент растворимого активного материала оказывается более высоким. [c.280]

    Природа предоставила нам редкую возможность установить структуру фермент-субстратных комплексов трипсина и химотрипсина с полипептидами, создав множество ингибиторов-полипептидов, которые очень прочно связываются с трипсином и химотрипсином, поскольку зафиксированы в той конформации, которую субстрат принимает при связывании [52]. Эти полипептиды не гидролизуются при физиологических условиях, так как подвижность аминогруппы, которая высвобождается при расщеплении пептида, ограничена и она не может диффундировать из активного центра фермента. При устранении ограничений в панкреатическом ингибиторе трипсина путем восстановления дисульфидного мостика в полипептидной цепи пептидная связь между Ьуз-15 и А1а-16 легко расщепляется трипсином [53]. Структура трипсина, его комплекса с основным панкреатическим ингибитором трипсина и свободного ингибитора была установлена при разрешении 1,4, 1,9 и 1,7 А соответственно [54]. Полученные данные относятся к числу наиболее точных — положение атомов известно с точностью 0,1—0,2 А. Эти и другие исследования дали следующую информацию относительно связывания субстратов [55—65]. [c.39]


    Цитохромоксидазы выполняют в аэробных организмах уникальную функцию они соединяются с Ог почти таким же образом, как и гемоглобин, а затем быстро восстанавливают Ог до двух молекул НгО [24а]. Происходит разрыв связи О—О для восстановления требуется четыре электрона. Очевидно, процесс этот сложен и пока еще плохо изучен. Важно отметить, что цитохромоксидаза, содержащаяся в митохондриях млекопитающих, имеет два гема (цитохром а) и два атома u(I) на одну функциональную единицу. Таким образом, при восстановлении обеих молекул цитохрома а и двух атомов меди может быть запасено четыре электрона для последующего восстановления одной молекулы Ог. Химия цитохромоксидазы слабо изучена. Как впервые обнаружил Кейлин, только половина молекул цитохрома а соединяется с СО. Она была названа цитохромом аз. По данным электрофореза в полиакриламидном геле с додецилсульфатом натрия, в цитохромоксида-зе дрожжей имеется шесть или семь субъединиц с мол. весом от 5 000 до 42 000 [24Ь, с]. Интересно отметить, что три наиболее крупные субъединицы, по-видимому, кодируются генами митохондриальной ДНК. Группы гема присоединены к пептидам меньшего размера. Было высказано предположение, что в интактном ферменте молекула Ог вначале связывается между атомом железа цитохрома аз и ионом двухвалентной меди aV—Ог—Си+. На следующей стадии происходит двухэлектронный процесс восстановления Ог с образованием перекисной структуры и далее двух молекул воды. [c.376]

    Очевидно, что N-концевые группы всех Т-пептидов отличаются от N oнцeвыx групп С-пептидов, поскольку использованные для расщепления ферменты действуют по разным точкам. Исключение составляют пептиды, полученные из 1S-конца исходной цепи, они должны иметь одинаковое начало. Из рассмотрения приведенных в табл. 7.4 структур видно, что таковыми являются пептиды Т-10 и С-5. При этом пептид Т-10 входит в состав С-5, который в дополнение к Т-10 содержит остаток F (фенилаланин). Следовательно, пептид серии Т, примыкающий с С-конца к Т-10, должен начинаться с фенилаланина. Таковым в приведенной серии является только пептид Т-4, т.е. последовательность трипсиновых фрагментов с N- toнцa молекулы Т-10, Т-4. Этот <двойной> Т-пептид содержит весь пептид С-5 и сверх того фрагмент ER. Следовательно, к С-5 должен примыкать пептид С-7, начинающийся с этих двух аминокислотных остатков. Следующая за аргинином основная часть пептида С-7 является N-концевой частью пептида Т-14, который примыкает в исходной структуре к Т-4. Восстановленная таким путем N-концевая последовательность рибонуклеазы приобретает вид Т-10, Т-4, Т-14. Последний содержит остаток тирозина (Y), т е. точку расщепления химотрипсином. Поэтому третий слева пептид группы С должен начинаться с последовательности NqMNK. Это позволяет записать блок С-пептидов на N-конце в виде G-5, С-7, С-9. Пептид С-9 содержит в своем составе сразу несколько Т-пептидов — [c.274]

    В послвднев время появились данные об эффективности восстановленного глютатиона при некоторых заболеваниях /31/. Три-пептид глютатиона, имеющий в своем составе 5Н-групцу цистеи-на, играет важную роль в защите тиоловых групп ферментов и кровяного пигмента от окисления и в осуществлении основных окислительно-восстановительных процессов в тканях /20/. [c.125]

    Цистеинпротеиназы [22] — ферменты, функция которых зависит от наличия тиольной группы цистеинового остатка в активном центре, относятся к цистеинсодержащим белкам именно наличие этого аминокислотного остатка обеспечивает образование фиксирующих конформацию дисульфидных мостиков в белках и ползш птидах путем образования фрагмента цистина. Более простой представитель этого семейства — трипептид глутатион — также содержит остаток цистеина предполагают, что этот пептид грает важную роль в биохимии в процессах восстановления — окисления и перехвата свободных радикалов. Однако возможность его участия в удалении из биологических систем токсичных углеводородов за счет нуклеофильной атаки серы на оксиды ароматических углеводородов недавно была поставлена под сомнение [23], [c.134]

    Субтилизин получен в кристаллическом виде культуральной жидкости Ba ielus subtilis [40]. Удивительная специфичность данного фермента обнаружена в опытах с ограниченным гидролизом яичного альбумина, который приводит к образованию нового кристаллического белка — пластинчатого альбумина (плакальбуми-на) — с отщеплением гексапептида Ала-Гли-Вал-Асп-Ала-Ала [41]. Другим примером такого ограниченного действия субтилизина является отщепление 20-членного N-концевого пептида от нативной рибонуклеазы [42]. Этот S-пептид и остаточный белок, называемый S-белок , не обладают ферментативной активностью. Оба компонента проявляют высокое взаимное сродство даже в очень разведенных растворах при их смешении происходит реконструкция фермента с восстановлением активности, близкой к исходной. [c.126]

    Хотя из литературных данных известно, что изучались различные химические методы определения С-концевых аминокислот [206], ни один из этих методов не обнаружил достаточно удовлетворительных результатов, которые давали бы основание к его широкому использованию. Поэтому наибольшее распространение получил способ, основанный не на химической, а на ферментативной реакции с карбоксипептидазой — ферментом, реагирующим лишь с теми пептидами, которые содержат свободную карбоксильную группу. Поскольку рассмотрение ферментативных реакций выходит за рамки настоящего раздела книги, реакция с карбоксипептидазой в данном изложении не описывается. Следует отметить, однако, что проблема развития химии белка настолько важна, что вполне оправданы постоянно продолжающиеся исследования, направленные на поиск и разработку удобных и с широкими возможностями применения химических методов. Было показано, что для установления последовательности аминокислот с С-конца белковой молекулы по крайней мере ограниченное применение могут найти три разных химических метода, так как они дают результаты, подтверждающие данные, получающиеся при использовании карбоксипептидазы. Речь идет о гидразинолизе, этерификации с последующим восстановлением сложноэфирной группы на конце молекулы в спиртовую, а также о реакции с неорганическим тиоци-анатом. [c.376]


    Ферментативное расщепление ИгГ имеет особое значение при исследовании различных биологических свойств молекулы. Продолжая работы, начатые по исследованию действия нескольких протеолитических ферментов, ряд авторов показали, что папаин расщепляет ИгГ кролика на три крупных фрагмента — I, ПиШ — с образованием очень малого количества мелких пептидов. Фрагменты I и II имеют молекулярный вес около 42 ООО, III — несколько больше. Как I, так и II содержат участки со свойствами антител, обладающие сродством к специфическому антигену, что было показано несколькими методами [1, 20, 21, 22]. Фрагмент III легко кристаллизуется и содержит в основном изотипические (т. е. видоспецифические) антигенные участки. Аллотипические антигенные участки (т. е. участки, определяющие отличия между иммуноглобулинами разных индивидуумов одного и того же вида) связаны с фрагментами I и II, тогда как способность фиксироваться на KOHie и проходить через плаценту, но-видимому, связана со структурными особенностями фрагмента III. Связывание комплемента после реакции ИгГ со специфическим антигеном представляет собой сложную реакцию, в которой принимают участие все части молекулы, входящие во фрагменты I, II и III [23]. Вполне возможно, что наиболее важным моментом для выяснения структуры молекулы является тот факт, что все указанные биологические свойства сохраняются после расщепления молекулы на три части. Это дает веские основания для предположения, что папаин гидролизует пептидные связи на небольшом уязвимом участке и что исходная молекула состоит из определенных частей, пространственная структура которых не затрагивается при гидролизе. Нисонов и сотр. [24] показали, что при гидролизе пепсином образуется одна фракция с молекулярным весом около 100 ООО, в которой сохраняются оба участка антитела. При восстановлении цистепном в низкой концентрации эта фракция расщепляется на равные части, которые по биологическим и химическим свойствам очень сходны с фрагментами [c.104]

    При анализе белков со сложной четвертичной структурой целесообразно разделять их на составляющие субъединицы или полипептиды. В случае иммуноглобулинов для диссоциации полипептидных цепей проводили избирательное восстановление межцепочечных дисульфидных связей [44, 46]. Для получения крупных, хорошо идентифицируемых фрагментов, пригодных для дальнейшего расщепления до коротких цистинсодержащих пептидов, нативные белки расщепляют бромоцианом или протеолитическими ферментами [19, 28, 42, 46, 47]. [c.168]

    Глутатионпероксидаза. Этот фермент катализирует восстановление пероксида водорода за счет окисления глутатиона. Глутатион представляет собой трипептид т глутамилцистеинилглицин остаток глутаминовой кислоты в этом пептиде соединен со следующей аминокислотой своей т карбоксильной группой  [c.455]


Смотреть страницы где упоминается термин Пептиды, восстановление ферментами: [c.505]    [c.142]    [c.378]    [c.505]    [c.145]    [c.723]    [c.184]    [c.184]    [c.144]    [c.15]    [c.490]    [c.96]    [c.26]   
Методы химии белков (1965) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Пептиды восстановление



© 2024 chem21.info Реклама на сайте