Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорирование термическое

    Хлорирование парафиновых углеводородов может осуш,ествляться тремя способами фотохимическим, каталитическим и термическим. Оно протекает согласно реакции  [c.112]

    Термическое хлорирование находит очень большое применение для получения хлористого амила [9] из технического пентана (см. ниже рис. 64). Хлористый амил омыляют в амиловый спирт (пентазол), который сам по себе или в виде ацетата является важнейшим растворителем для лаковой промышленности. Пентан получают из газового бензина перегонкой, он представляет собой смесь примерно равных частей м-пентана и изопентана. С недавнего времени стали использовать только н-пентан. [c.115]


    Г. ТЕРМИЧЕСКОЕ ХЛОРИРОВАНИЕ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.113]

    В соответствии с программой и возможностями школьного курса мы можем ознакомить учащихся экспериментальным путём с химическим использованием природного газа (хлорирование, термическое разложение), с перегонкой и крекингом нефти, с использованием отходов крекинга (получение спирта из этилена), с коксо-химическим производством, с получением некоторых пластмасс (например, фенол-формальдегидных )и искусственного волокна (медноаммиачного), с переработкой жиров и крахмала, с гидролизным производством и т. д. [c.14]

    ЭЛ е ктр ол ити чес ки м при нагревании хлорированием термическим термически м восстанов- окислением [c.315]

    Хлорирование углеводородов или их производных осуществляется для получения органических растворителей, ядохимикатов и разнообразных продуктов органического синтеза. В зависимости от применяемых средств инициирования различают следующие методы хлорирования термическое, фотохимическое и каталитическое. Первые два метода — гомогенные. [c.136]

    Для хлорирования газообразных прп нормальных условиях парафиновых углеводородов наибольшее значение имеет термический способ. Термическое хлорирование протекает в отсутствие воздуха и катализатора. Реакция эта протекает также по цепному механизму, она сильно тормозится кислородом и другими соединениями, способными обрывать течение реакционных цепей, например окислами азота. [c.113]

    Атом хлора, освобождающийся при фотохимическом хлорировании за счет световой энергии, здесь образуется в результате термической диссоциа- [c.113]

    Собственно хлорирование можно проводить тремя способами фотохимическим, каталитическим, термическим. [c.137]

    Как правило, фотохимический процесс применяют для хлорирования жидких углеводородов и частично хлорированных углеводородов, газообразные же парафиновые углеводороды целесообразнее подвергать термическому хлорированию. [c.142]

    Преимущество фотохимического хлорирования по сравнению с термическим заключается в том, что при фотохимическом процессе в значительной степени предотвращаются как разложение сырья в результате пиролиза, так и реакции изомеризации. Реакция начинается практически мгновенно устраняется продолжительный индукционный период с накоплением хлора в реакционном объеме. Это может происходить и при жидкофазном хлорировании в подобных случаях реакция начинается бурно с внезапным выделением тепла и хлористого водорода, что в результате обильного пенообразования приводит к уносу продуктов реакции. Недостатком фотохимических процессов являются увеличенные капиталовложения и эксплуатационные расходы и высокая чувствительность к присутствию подавляющих реакцию примесей. Экономические преимущества фотохимического хлорирования объясняются высоким квантовым выходом. Принимают, что в условиях промышленных установок на каждый излученный световой квант вступает в реакцию около 100 молекул хлора. В зависимости от характера исходного углеводорода, концентрации хлора и температуры ртутная лампа мощностью 400 вт активирует протекание реакции 5—15 кг хлора в час. [c.142]


    Фотохимическое хлорирование парафиновых углеводородов в газовой фазе практически не применяется. В тех случаях, когда хлорирование в газовой фазе легко осуществимо, например при переработке низкомолекулярных парафиновых углеводородов, обычно отдают предпочтение термическим или термокаталитическим процессам. [c.144]

    Каталитическое хлорирование в присутствии твердых катализаторов в противоположность рассмотренным выше фотохимическим реакциям и термическому хлорированию (которое будет рассмотрено дальше) не зависит от присутствия веществ, вызывающих обрыв цепей. Отсюда следует, что механизм этой реакции принципиально отличается от рассмотренного выше цепного механизма. [c.153]

    А. Общие сведения. Протекание реакции термического хлорирования этана [c.155]

    Термическое хлорирование протекает в отсутствие катализаторов и света. Этот метод предпочтительно применять для хлорирования низкомолекулярных парафиновых углеводородов, для которых ои, несомненно, является наиболее важным способом хлорирования. [c.155]

    Энергия активации при термическом хлорировании достигает. величин порядка 20 ООО кал/мол, в то время как при каталитическом хлорировании она составляет всего 12 000 кал мол. [c.156]

    Сложность протекания термического хлорирования исчерпывающе доказана глубокими исследованиями [54], которые в значительной степени выяснили влияние различных факторов при термическом хлорировании. [c.156]

    Протекание термического хлорирования можно несколько подробнее пояснить на примере хлорирования этана [54]. [c.156]

    Отсюда следует уравнение кинетики термического хлорирования этана в отсутствие кислорода и катализаторов [c.156]

    Установлено [52], что скорость аналогичной реакции термического хлорирования метана в присутствии кислорода не зависит от концентрации углеводорода, прямо пропорциональна квадрату концентрации хлора и обратно пропорциональна концентрации кислорода. [c.157]

    Из табл. 65 видно, какие значительные количества этилена образуются при термическом хлорировании хлористого этила ири различных температурах, ири которых в отсутствие хлора разложение его на хлористый водород и этилен еще не протекает. [c.158]

    Температура предварительного нагрева реагирующих компонентов при термическом хлорировании должна достигать 400—600°. Как правило, она значительно выше, чем требуется при каталитическом хлорировании. Фотохимический процесс, протекание которого, как уже отмечалось, практически не зависит от температуры, можно проводить даже при комнатной температуре. [c.161]

    Продукты, образующиеся при термическом хлорировании хлористого этила [54] [c.158]

    Из всех этих наблюдений вытекает, что механизм термического хлорирования отличается исключительной сложностью. Поэтому его необходимо рассмотреть несколько детальнее, так как для газообразных парафиновых углеводородов чаще всего применяют термические процессы хлорирования. [c.158]

    Ниже подробнее рассмотрены некоторые типичные примеры термического хлорирования углеводородов. [c.159]

    Б. Термическое хлорирование в лабораторных условиях [c.159]

    Термическое хлорирование ниэкомолекулярных углеводородов можно проводить также под давлением в жидком состоянии без применения инертных растворителей. Аппаратура для такого варианта процесса представлена на рис. 33 [62]. [c.164]

    Термическое хлорирование. Термическое хлорированпе применяется для получения моно- и полихлоридов низших углеводородов. Активация хлора в атом методе достигается нагреванием его в процессе реакции. Энергия активации хлора при термическом хлорировании составляет 20 000 кал моль, тогда как при каталитическом 12 000 кал моль. [23]. Многочисленными исследованиями установлено, что метан, этан, пропан и бутаны вступают в реакцию с хлором уже прн температуре около 250°. [c.363]

    Технология получения винилхлорида сбалансированным по хлору методом (комбинация хлорирования и оксихлорирования этилена с термическим дегидрохлорированием 1,2-дихлорэтана) выступает одним из наиболее интересных примеров реализации принципов создания технологий 00 и НХС. Технология является непрерывной. По химической составляющей ее, несмотря на наличие трех отдельных реакторных подсистем, можно отнести к двухстадийной. Это вызвано тем, что каждая из цепей химических превращений, ведущих к винилхлориду, состоит из двух стадий оксихлорирование + термический пиролиз и хлорирование + термический пиролиз. [c.522]

    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]


    Для термического хлорирования низкомолекулярных парафиновых углеводородов предло/копы различные технические способы, выбор которых определяется тем, какая степень хлорирования должна быть достигнута в том или ином случае. Значительная трудность в осуществлении этих процессов обусловливается тем, что парафиновый углеводород и хлор не дают абсолютно гомогенной смеси. Этим вызывается опаспост . местного чрезмерно глубокого хлорирования и связанного с этим образования сажи. [c.114]

    Большой интерес представляет способ термического хлорирования в присутствии взвешенных веществ, как он был разработай в промышленности Герольдом, Гриммом и Зексауером [8]. Уже упомянутые трудности, связанные с образованием сал и и отложением угля и смолистых продуктов в трубопроводах и в других частях аппаратуры, в этом способе исключаются. Способ заключается в том, что, например, угольные шарики из специального бункера увлекаются потоком поступающего в печь газа и в течение всего процесса находятся в состоянии кипящего движения. Сажа и углистые частички, выделяющиеся в процессе хлорирования, непрерывно измельчаются трущимися друг о друга угольными ядрами и с газовым потоком выносятся из установки. [c.115]

    В промышленных условиях термическое хлорирование пентана проводят следующим образом на 15—20 частей пентана берут 1 часть хлора и смесь пропускают через трубчатую печь при температуре около 200° с продолжительностью пребывания в печи примерно 2,5 сек. Незначительное время превращения обусловливается исключительно высокой скоростью газа,, при которой достигается хорошая гомогенизация смеси. На практике струю хлора вдувают в поток пентана со скоростью 90 тыс. м час. Дальнейшая переработка производится нерегопкой, что в данном случае (при жидких продуктах реакции) осуществляется сравнительно просто. Непрореагировавший пентап возвращается в процесс. [c.115]

    Фотохимическое хлорирование -бутана при 45—55° было детально изучено Топчиевым с сотрудниками [18] с поразительными результатами. Авторы утверждают, что отношение образующихся моно-и дихлорбутанов не может превышать максимальной величины 77 23. При фотохимическом процессе в противоположность термическому хлорированию даже при десятикратном молярном избытке бутана по отношению к хлору авторам не удалось улучшить соотношение выхода моно- и дихлорбутанов. Состав смеси изомерных монохлорндов при фотохимическом хлорировании был таким же, как при термическом, т. е. около 37% первичного и 63% вторичного хлористых бутилов. Объемная производительность реактора достигает 450 г хлористых бутилов на 1 л реакционного объема в час. [c.145]

    Этан в количестве 100 мл/мин пропускают через охлажденный до 0° тетраэтилсвинец и подводят в реакционную стеклянную трубку, где он взаимодепствует с 50 мл/мин хлора, разбавленного 150 мл азота. Уже при температуре 132° хлор реагирует более чем на 95%. В отсутствие тетраэтилсвинца при прочих одинаковых условиях реакция ие протекает при термическом процессе одинаковая скорость хлорирования достигается лишь при температуре 250—290°. [c.152]

    Такие термические цепи возникают вследствие неравномерного распределения значительных количеств энергии, выделяющихся при хлорировании (тепловой эффект реакции хлорирования достигает около 27 ккал/г-мол). Образующиеся в результате этого возбужденные молекулы сталкиваются до передачи их энергии стенке с другими молекулами и, следователгшо, являются источником активации, необходимой для протекания термичсгко цет он рслкцнн. [c.157]

    На рис. 30 показана схема лабораторной установки, приме-нявщейся одной группой исследователей [59] для термического хлорирования низкомолекулярных, газообразных в нормальных условиях углеводородов. [c.159]

    В. Процесс термического хлорирования по Хэссу и Мак-Би (60) [c.160]

    Американские исследователи Хэсс и Мак-Би разработали универсальный процесс термического хлорирования -газообразных парафиновых углеводородов, который может использоваться и для [c.160]

    Этот процесс подробно рассмотрен ниже на примере хлорирования пропана для получения моно- и дихлорпропапа. В последующем было детально изучено [61] термическое и фото химическое хлорирование этана соответственно при 440° и около 150° по Хэссу — Мак-Би. [c.161]

    Г. Термическое хлорирование метана по Хэссу—Мак-Би (03) [c.164]


Смотреть страницы где упоминается термин Хлорирование термическое: [c.114]    [c.22]    [c.114]    [c.114]    [c.117]    [c.155]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.135 , c.138 , c.140 , c.173 , c.203 ]

Общая химическая технология органических веществ (1955) -- [ c.161 ]

Технология нефтехимического синтеза Издание 2 (1985) -- [ c.415 , c.416 ]

Технология органического синтеза (1987) -- [ c.241 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.121 , c.124 , c.126 , c.166 , c.176 ]

Общая химическая технология Том 2 (1959) -- [ c.357 ]

Химия и технология химико-фармацевтических препаратов (1954) -- [ c.19 , c.23 , c.80 , c.82 , c.241 , c.242 , c.337 ]




ПОИСК







© 2025 chem21.info Реклама на сайте