Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорирование жидкофазное

    Скорости замещения первичного, вторичного и третичного атомов водорода в случае газофазного хлорирования низших парафиновых углеводородов при 300° или в случае жидкофазного хлорирования при 30" относятся между собой приблизительно как 1 3,25 4,43. Следовательно, если принять относительную скорость замещения первичного атома водорода метильной группы за единицу, то вторичный атом водорода метиленовой группы реагирует в 3,25 раза, а третичный атом водорода метиновой группы в 4,43 раза быстрее. [c.555]


    Технология жидкофазного хлорирования [c.110]

    Колонные реакционные аппараты применяют для процессов в фаза.к жидкость — газ и жидкость — жидкость . Имеются случаи использования для химических процессов типовых тарельчатых и насадочных колони, однако реакционные колонны имеют ряд конструктивных особенностей, связанных в первую очередь с необходимостью теплообмена и наличием катализатора. В колонных аппаратах проводят реакции жидкофазного окисления органических продуктов, хлорирования, гидрирования и ряд других процессов органической и неорганической химии. Насадочные реакционные колонны часто имеют в качестве насадки катализатор. [c.249]

    Технологическая схема хлорирования в газовой фазе состоит из тех же стадий, что и при жидкофазном хлорировании. Подготовка ))еагентов заключается в испарении жидкого хлора, предварительном нагревании газообразного хлора, осушке реагентов концентрированной серной кислотой или адсорбентами, смешении реагентов друг с другом и с рециркулятом. В случае синтеза аллил-и металлилхлорида исходные углеводороды испаряют и подогревают до нужной температуры. [c.121]

    Гидрохлорирование этилена осуществляется по технологической схеме, представленной на рис. 12.13. Безводный хлористый водород и сухой этилен (90—95%) смешивают приблизительно в равных мольных пропорциях и направляют в реактор 1. Смесь газов при 35—38 °С поступает в нижнюю часть, реактора и проходит через раствор катализатора — смесь хлористого алюминия с хлористым этиленом или более высококипящим хлорированным растворителем. Тепло, выделяющееся при гидрохлорировании, отводится охлаждающими змеевиками. Для обеспечения жидкофазного состояния продуктов реакции требуется давление около 275 кПа. Избыток жидкости из реактора перетекает в подогреватель, а затем — в испаритель 2. Пары хлористого этила (и растворителя) направляются в систему очистки. Жидкость из испарителя перекачивают в промежуточный бак 4, куда добавляют свежий хлористый алюминий, после чего охлажденная смесь поступает в реактор 1. Пар, выходящий из испарителя, содержит небольшое количество метана, этилена, хлористого водорода и хлорированных углеводородов. Хлористый водород удаляют промывкой водой в скруббере 3, а органические компоненты в виде пара подают в ректификационную колонну 5. При отдувке из колонны удаляются неконденсирующиеся газы, а хлористый этил и воду отбирают как дистиллят. Продукт сушат декантацией и отправляют на склад. [c.407]


    Преимущество фотохимического хлорирования по сравнению с термическим заключается в том, что при фотохимическом процессе в значительной степени предотвращаются как разложение сырья в результате пиролиза, так и реакции изомеризации. Реакция начинается практически мгновенно устраняется продолжительный индукционный период с накоплением хлора в реакционном объеме. Это может происходить и при жидкофазном хлорировании в подобных случаях реакция начинается бурно с внезапным выделением тепла и хлористого водорода, что в результате обильного пенообразования приводит к уносу продуктов реакции. Недостатком фотохимических процессов являются увеличенные капиталовложения и эксплуатационные расходы и высокая чувствительность к присутствию подавляющих реакцию примесей. Экономические преимущества фотохимического хлорирования объясняются высоким квантовым выходом. Принимают, что в условиях промышленных установок на каждый излученный световой квант вступает в реакцию около 100 молекул хлора. В зависимости от характера исходного углеводорода, концентрации хлора и температуры ртутная лампа мощностью 400 вт активирует протекание реакции 5—15 кг хлора в час. [c.142]

    После отделения хлорированных углеводородов газообразную смесь этилена и хлористого водорода направляют непосредственно в секцию оксихлорирования 2. Винилхлорид, удовлетворяющий полимеризационной спецификации, отбирают из последней колонны фракционной дистилляции, тогда как дихлорэтан из реактора высокотемпературного хлорирования направляют в секцию низкотемпературного жидкофазного хлорирования 3 для перевода в тетрахлорэтан. Смесь симметричного и несимметричного тетрахлорэтана поступает в печь пиролиза, где получают трихлорэтилен и хлористый водород. [c.412]

    При жидкофазном хлорировании получаются такие относительные скорости замещения первичных, вторичных и третичных атомов водорода, которые при парофазном хлорировании получаются только при гораздо более высоких температурах. [c.59]

    Продукты, получаемые жидкофазным хлорированием [c.111]

    В случае жидкофазного хлорирования определенные значения относительных скоростей замещения атомов водорода при первичных, вторичных и третичных атомах углерода достигаются при гораздо более низкой температуре, чем при парофазном хлорировании. Есть основания считать, что при низкотемпературном хлорировании парафинов нормального строения, проводимом в жидкой фазе, в первую очередь замещаются атомы водорода метиленовых групп, расположенных ближе к концам цепи. [c.78]

    Хлорирование метана осуществляют хлором в паровой фазе. Полученные хлорпроизводные улавливают в абсорбере смесью четыреххлористого углерода и хлороформа, выделяют из смеси в отпарной колонне и после нейтрализации и осушки подают во фракционирующие колонны, где выделяются хлористый метил и хлористый метилен. Оставшаяся в кубовой жидкости часть хлористого метилена превращается в жидкофазном реакторе в хлороформ и четыреххлористый углерод. Указанные продукты используются в качестве сырья для производства каучука, силиконов, пластических масс, а также растворителей и хладагентов. [c.158]

    Кроме этого линейного обрыва при газофазных реакциях отмечены и случаи квадратичного обрыва, которые особенно характерны для жидкофазных процессов, В зависимости от энергии разрыва связей в органических веществах и стабильности промежуточных радикалов квадратичный обрыв протекает на углеводородных радикалах (хлорирование углеводородов, особенно толуола) [c.105]

    Нитрогруппа сильно препятствует дальнейшему замеш,ению, поэтому при газофазном нитровании, которое всегда осуществляют с избытком углеводорода (от 3 1 до 10 1), динитропроизводные le образуются. Однако в случае жидкофазного нитрования моно-нитросоединение растворяется в азотной кислоте значительно лучше, чем исходный углеводород, и наблюдается образование динитропроизводных. При этом вторая нитрогруппа вступает или в положения, удаленные от первой, или к тому же углеродному атому, у которого уже находится нитрогруппа. Следовательно, подобно хлорированию, дезактивируются главным образом атомы водорода у соседних углеродных атомов. Вследствие этого из 2-нитропропана можно с хорошим выходом получить 2,2-динитропропан  [c.346]

    Методы хлорирования. Хлор медленно реагирует с парафиновыми углеводородами в темноте при нормальных температурах, поэтому хлорирование осуществляется активированием хлора посредством нагревания, света или катализаторов. В промышленности применяют термические и фотохимические методы, и в зависимости от способа активации процессы классифицируются как фотохимические жидкофазные, термические жид-кофадные, фотохимические нарофазные или термические парофазные. [c.56]

    Отсутствие в ИК-спектрах полос поглощения, характерных для колебания связи углерод—галоид, наблюдали и раньше в продуктах гомогенного жидкофазного хлорирования угля и гуминовых кислот [80]. Другие исследователи [81] обнаружили, что взаимодействие асфальтенов и иода в растворе бензола дает комплексные [c.148]


    Дихлориды образуются как в результате отщепления хлористого водорода с последующим присоединением хлора по двойной связи, так и в результате прогрессирующего замещения. Медленное термическое хлорирование способствует первому из указанных процессов. Быстрое жидкофазное или быстрое парофазное хлорирование с однократным прохождением газов через реактор способствует второму процессу и является неблагоприятным условием для первого. [c.78]

    Фотохимическое хлорирование можно проводить при более низких температурах в этом отношении оно подобно жидкофазному хлориро- [c.78]

    В литературе имеются указания [3], что фотохимическое хлорирование применяют в промышленности пока в ограниченной степени. В этих процессах не образуется ненасыщенных продуктов, сажи или смолы, и отсутствует индукционный период. Продукты, получаемые при жидкофазном и парофазном фотохимическом хлорировании, весьма сходны по своей природе. Недостатками процессов фотохимического хлорирования являются высокие капиталовложения и необходимость разрешать вопросы подвода электроэнергии. [c.79]

    СОЗДАНИЕ ТЕОРИИ И МЕТОДОВ УПРАВЛЕНИЯ ПРОЦЕССАМИ ЖИДКОФАЗНОГО ХЛОРИРОВАНИЯ УГЛЕВОДОРОДОВ [c.7]

    Полихлорпроизводные пропана, бутана, пентана и гексана можно, получать непрерывным методом фотохимического хлорирования в жидкофазной системе, пропусканием газообразных или введением жидких углеводородов в жидкий инертный растворитель при высоком отношении хлор углеводород. В качестве растворителя для этого целесообразно применять соответствующий полихлоралкан, получаемый хлорированием незамещенного углеводорода. [c.191]

    На рис. 26 и 27 показаны основные типы клораторов. Различают газофазное и жидкофазное хлорирование. Температура процессов хлорирования колеблется от О до 500 °С. Жидкофазное хлорирование проводят в присутствии катализаторов (металлического железа, треххлористого железа, треххлористого алюминия и др.). [c.111]

    Процесс дихлорирования протекает но двум механизмам 1) путем потери хлористого водорода с последующим присоединением хлора к образовавшемуся олефину и 2) путем последовательного замещения. Медленное термическое хлорирование благоприятствует механизму тогда как при быстрых жидкофазных или парофазных термических реакциях, протекающих за один проход через зону реакции, или в условиях низкотемпературной фотохимической реакции механизм 1 практически исключается. [c.59]

    Хлорирование проводится в темноте либо в жидкой, либо в паровой фазе, и может ускоряться нагреванием, светом и такими катализаторами, как йод, металлы, галоиды металлов или другие агенты, способные превращать молекулу хлора в атомы хлора [664, 665]. Замещение происходит в различных позициях, и контроль возможен только в ограниченных размерах [430, 668, 669]. Так, метан хлорируется с получением некоторого количества всех четырех возможных хлорпроиззодных в реакции с пропаном получается либо первичный, либо вторичный хлориды. Жидкофазное хлорирование дает более высокий выход первичных продуктов замещения. [c.144]

    Из продуктов, получаемых замещением ароматических соединений в боковой цепи, в промышленности основного органического синтеза наибольшее значение имеет бензилхлорид (табл. 22), который используют для получения бензилового спирта и его эфиров, бензилци-анида, бензилцеллюлозы и т. д. Процесс его производства путем хлорирования толуола почти аналогичен жидкофазному хлорированию парафиновых углеводородов и их галогенопроизводных в отношении типа хлораторов, технической схемы и методов аналитического контроля. [c.129]

    Во ВНИИполимер проведены работы по жидкофазному хлорированию бутадиена при низкой температуре (О-i--5 0). Показано, что в выбранных условиях хлорирование протекает более [c.721]

    Реакционный узел (как и весь процесс жидкофазного хлориро-Bi ния) можно выполнить и периодическим, и непрерывно действующим. Независимо от этого основной аппарат (хлоратор) должен быть снабжен барботером для хлора, холодильниками для отвода выделяющегося тепла, обратным холодильником илн газо-отделптелем па линии отходящего газа (НС1), необходимыми коммуникациями и контрольно-измерительными приборами. В реакторе для фотохимического хлорирования имеются также приспособления для облучения реакционной массы (внутренние ртутно-кварцевые лампы, защищенные плафонами, илн наружные лампы, освещающие реактор через застекленные окна в корпусе). Схемы типичных реакторов для жидкофазного радикально-цепного хлорирования изображены на рис. 37. [c.114]

    Технология жидкофазного радикально-цепного хлорирования складывается из нескольких стадий подготовки исходных реагентов, собствепио хлорирования, переработки отходящего газа и ути-лнзагии НС1, переработки жидкой реакционной массы и выделения продуктов реакции. [c.115]

    Гексахлорциклопентадиен s le получают двухступенчатым хлорированием цнклопента-диена или пентан-амиленовых фракций. Вначале по той же причине, как и в предыдущем случае, проводят жидкофазное хлорирование, получая продукт с приблизительной брутто-формулой 5H5 IS или СбНбСЬ. Затем в труб- [c.149]

    По неразветвленно-цепному механизму протекает большое число практически важных реакций хлорирование, ряд реакций жидкофазного окисления органических соедиг нений, термический крекинг, полимеризация и др. [c.197]

    Технология получения алкилсульфонатов. По технологии у реакции су льфохлорирования имеется много сходства с жидкофазным радикально-цепным хлорированием парафинов (стр. 112). Процесс осуществляют главным образом фотохимическим способом в кэлонных аппаратах, снабженных по всей высоте устройствами для облучения смеси ртутно-кварцевыми лампами. Проверен и радиационнохимический метод с у-облучением источником °Со. При непрерывном производстве часто применяют единичную барботажную колонну, хотя из-за развития обратного перемешивания при барботированни газа в таком аппарате несколько ухудшается состав реакционной смеси. Предложено проводить процесс и в каскаде барботажных аппаратов или в секционированной колонне с тарелками. [c.339]

    В трехстадийном процессе фирмы PPG Industries, США (рис. 12.8) вначале получают 1,2-дихлорэтан хлорированием или оксихлорированием этилена. Далее 1,2-дихлорэтан газофазным хлорированием превращают в 1,1,2-трихлорэтан. Обрабатывая его горячим раствором Са (ОН) , получают 1,1-дихлорэтилен с выходом, близким к стехиометрическому. Недостатками указанного способа дегидрохлорирования 1,1,2-трихлорэтана являются низкая степень превращения в винилйденхлорид и высокий выход цис- и /лранс-изомеров 1,2-дихлорэтилена. Винилиденхлорид подвергают жидкофазному гидрохлорированию в присутствии хлорного железа с образованием 1,1,1-трихлорэтана. [c.404]

    Детали технологии промышленного производства жидких хлорпарафинов известны лишь по данным этой фирмы. Хлорированные парафины с содержанием клора до 70% производят путем непрерывного тфмического жидкофазного хлорирования. Хлорирование парафинов Сю—Сдд осуществляют в каскаде трех барботажных реакторов при атмосферном давлении в интервале температур 80—120 °С. Степень превращения хлора в данном процессе приближается к 100%. [c.405]

    Однако, если хлорбензол должен использоваться при изготовлении красителей или промежуточных соединений, то предпочтительно прямое жидкофазнов хлорирование сухим газообразным хлором. [c.422]

    Реакции присоединения хлора к ароматическому ядру имеют промышленное значение только для производства гексахлорциклогекса-на путем фотохимического хлорирования бензола. Процесс производства гексахлорциклогексана (гексахлорана) имеет много общего с жидкофазным хлорированием парафинов и толуола в боковой цепи. Гексахлоран — один из широко распространенных ядохимикатов инсектицидного действия. Из всех его стереоизомеров инсектицидной активностью обладает только -у-изомер (т. пл, 112° С), которого содержится в техническом продукте 11—16% (табл. 23) остальные изомеры — балласт. Можно получать обогащенный -у-изомером гексахлоран, например, путем дробной кристаллизации технического продукта. В небольших количествах выпускается и почти 100%-ный у-изомер (линдан). [c.130]


Смотреть страницы где упоминается термин Хлорирование жидкофазное: [c.128]    [c.58]    [c.71]    [c.260]    [c.111]    [c.126]    [c.286]    [c.287]    [c.400]    [c.400]    [c.404]    [c.304]    [c.79]    [c.167]    [c.8]   
Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.99 , c.104 ]

Технология нефтехимического синтеза Издание 2 (1985) -- [ c.419 , c.420 ]




ПОИСК







© 2025 chem21.info Реклама на сайте