Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формил глутаминовая кислота

    Аминокислотный состав белков. — Анализ гидролизата белков, содержащего до двадцати различных аминокислот (см. табл. 39), является чрезвычайно сложной задачей. Риттенберг (1940) разработал метод изотопного разбавления, согласно которому радиоактивную кислоту определенной удельной активности, например меченую глутаминовую кислоту, добавляют в известном количестве к анализируемой смеси, после чего выделяют глутаминовую кислоту обычным образом. Так как химические свойства природной и меченой кислоты одинаковы, то выделяемое вещество является смесью добавленной аминокислоты и первоначально присутствовавшей в пробе. Количество кислоты в гидролизате вычисляют по изотопному составу выделенной кислоты. Если добавляется рацемическая меченая кислота, то аминокислоты гидролизата перед выделением рацемизуют или же из выделенного рацемата отделяют чистую -форму. Точность анализа не зависит от метода выделения, выхода кислоты или концентрации ее в гидролизате. [c.655]


    Действие щелочной обработки проявляется также в изомеризации остатков аминокислот, которая затрагивает в первую очередь аспарагиновую и глутаминовую кислоту, а также фенилаланин, хотя она может касаться вСех аминокислот, если pH будет очень щелочным. Такая изомеризация имеет важные последствия в смысле питательных качеств, поскольку, как известно, эти формы аминокислот практически не используются организмом. [c.589]

Рис. 7. Строение окисленной и восстановленной форм глутатиона М-концевая глутаминовая кислота присоединена к цистеину через у-СООН-группу, а не через а-СООН-группу Рис. 7. <a href="/info/825728">Строение окисленной</a> и <a href="/info/685646">восстановленной форм</a> глутатиона М-концевая <a href="/info/957">глутаминовая кислота</a> присоединена к цистеину через у-<a href="/info/323105">СООН-группу</a>, а не через а-СООН-группу
    Гастрин является сравнительно небольшим полипептидом, построенным из 17 аминокислотных остатков на его N-конце (слева) находится остаток пироглутаминовой кислоты, представляющей собой циклическую форму глутаминовой кислоты. [c.104]

    Взаимосвязь между генами и молекулами белка можно проследить на примере разных форм гемоглобина, обнаруженных в эритроцитах человека. В 1949 г. было установлено, что у некоторых людей, страдающих серповидноклеточной анемией, эритроцит содержит форму гемоглобина (гемоглобин S), которая отличается от гемоглобина эритроцитов большинства людей (гемоглобин А). Различие этих форм невелико две а-цепи молекулы гемоглобина S идентичны а-цепям молекулы гемоглобина А, а -цепи различаются одним аминокислотным остатком. -Цепь гемоглобина А имеет в шестом положении, считая от ЫНа-конца полипептидной цепи, остаток глутаминовой кислоты, в то время как -цепь гемоглобина S имеет в этом положении остаток валина все другие остатки аминокислот те же, что и в гемоглобине А. [c.453]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]


    Витамин К выполняет свою основную функцию как кофермент реакций у-карбоксилирования остатка глутаминовой кислоты в неактивной форме факторов свертывания крови — протромбина, после чего соответствуюш,ий [c.281]

    У человека было обнаружено свыше 50 аномальных разновидностей гемоглобина. В одной из них остаток глутаминовой кислоты в каждой из р-цепей замеш ен остатком валина. Столь ничтожное, казалось бы, изменение снижает ионный заряд молекулы и степень диссоциации между гемом и глобином. Пониженная полярность облегчает, по-видимому, кристаллизацию несимметричных молекул гемоглобина, не содержащих кислород, заставляя эритроциты принимать несвойственную им форму. Такие эритроциты быстро разрушаются селезенкой, что приводит к гемолитической анемии. Эта молекулярная болезнь (термин введен Л. Полингом) известна под названием серповидноклеточной анемии. [c.493]

    Представляет интерес семейство гемоглобинов М. Присутствие такого гемоглобина в крови приводит к серьезным нарушениям выживают только гетерозиготы по данному аномальному признаку. Кровь в этих случаях темная, поскольку железо в половине субъединиц гемоглобина М необратимо окислено до трехвалентного (метгемоглобин). В нормальной крови содержание метгемоглобина не превышает 1%. В норме метгемоглобин восстанавливается специально метгемоглобин-редуктазной системой (дополнение 10-А), тогда как метгемоглобиныМ не восстанавливаются. У всех пяти гемоглобинов М имеются замены в местах, расположенных вблизи гемогруппы. В четырех из них один из гистидинов, связанных с гемом (F-8 или Е-7) либо в а-, либо в. р-субъединице, заменен на тирозин. В пятом валин-67 в р-субъединицах заменен на глутаминовую кислоту. Два гемоглобина М, имеющие замены в а-субъединицах (MBoston и Miwate), заморожены в Т(дезокси)-форме они обладают низким сродством к кислороду и связывают его некооперативно. [c.317]

    Используя значения р/Са, полученные в задаче 3, постройте теоретическую кривую титрования, изображающую зависимость числа эквивалентов Н и ОН , реагирующих с 1 молем глицина, от pH. Заметим, что форма такой кривой не зависит от р/Са. Постройте аналогичные кривые для глутаминовой кислоты (рКа для которой равны 2,19 4,25 и 9,67), гистидина (р/С равны 1,82 6,00 и 9,17) и лизина (р/Са равны 2,18 8,95 и 10,53). [c.332]

    Пиридоксаль можно было получить из пиридоксина окислением в мягких условиях, а пиридоксамин — из пиридоксаля (трансаминированием) при нагревании с глутаминовой кислотой в растворе. В действительности именно эти простые эксперименты подсказали Снеллу правильную структуру новых форм витамина Ве- [c.211]

    Особое техническое значение приобрела ферментация глутаминовой кислоты так называемыми микроорганизмами дикого типа. Культивируют бактерии в стерилизованных ферментерах при 35° С, используя в качестве источника углерода глюкозу или патоку и вводя в систему воздух и аммиак. Через 40 ч из культуры можно изолировать глутаминовую кислоту. Выход составляет 50 кг аминокислоты на 100 кг введенной глюкозы. Глутаминовая кислота в форме моноглутамата натрия применяется в значительных количествах как вкусовое вещество н приправа в пищевой промышленности. При незначительной добавке глутамата заметно усиливается и улучшается естественный вкус мясных блюд. [c.41]

    Растворимость глютенинов в растворах детергентов или в мылах [100, 122, 124, 176] ясно указывает, что гидрофобные взаимодействия играют важную роль в структуре и агрегации глютенинов. Составляющие их субъединицы должны поэтому характеризоваться значительной гидрофобностью поверхности. Действительно, эти субъединицы глютенинов богаты неполярными аминокислотами и бедны заряженными аминокислотами (глутаминовая кислота преимущественно в амидированной форме, как и аспарагиновая кислота), что благоприятствует существованию гидрофобных зон. Показатель средней гидрофобности позволяет различать две группы субъединиц, характеризующихся разной гидрофобностью и относящихся к разным областям молекулярных масс (см. табл. 6Б.13 и 65.14)  [c.212]

    Низкомолекулярные биорегуляторы глутатион, или у-глутамил-цис-теинил-глицин. В этом трипептиде N-концевую пептидную связь образует у-СООН-группа глутаминовой кислоты, а сам глутатион существует в двух формах - окисленной и восстановленной (GSSG и GSH) соответственно (рис. 7). [c.20]

    Ключи к познанию действительного механизма катализа лежат в структурных исследованиях. В описанной выше модели комплекса фермент-(NAG)e только две каталитические группы располагаются вблизи расщепляемой гликозидной связи. Это карбоксильные группы глутаминовой кислоты-35, которая, как полагают, в активном ферменте находится в СОгН-форме, и аспарагиновой кислоты-52, находящейся предположительно в виде иона СО . Первая из этих групп расположена вблизи кислорода уходящей группы и действует, согласно общепринятым представлениям, в качестве общего кислотного катализатора, способствуя удалению уходящей группы скорее в НО-форме, чем в форме 0 1путь (а) на схеме (54) [133, 143]. Согласно другой гипотезе путь (б) , карбоксилатная группа может выступать в роли нуклеофила, образуя ковалентный интермедиат (90), гидролизующийся скорее всего по ацетальному, а не по сложноэфирному центру, поскольку известно, что при этом сохраняется конфигурация гликозидного центра [144]. В настоящее время не существует каких-либо убедительных данных, позволяющих подтвердить или опровергнуть каждый из представленных на схеме (54) механизмов ]141]. [c.532]


    Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, р1 должна вычисляться из полусуммы значений рК для а- и е-МН,-групп. Таким образом, в интервале pH от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированпой аминогруппой и диссоциированной карбоксильной группой. Следует отме- [c.38]

    Синтетическая фолиновая кислота является рацемическим соединением по оптически активному центру асимметрии уС<б) птеридииового цикла, дающего два диастереомера (второй асимметрический атом находится в остатке глутаминовой кислоты, представляющей собой L-конфигурацию) С 6-di, -форма имеет[а Id—2,82° (НгО[265]. С 6-/,L-Фолиновая кислота получена из рацемата кристаллизацией кальциевых солей. [c.491]

    Кислые а-аминокислоты, имеющие в радикаледопОлАительную )боксилЬную группу, в сильнокислой среде находятся в полотью протонированной форме. Они являются трехосновными лотами (по Брендстеду), характеризующимися тремя значе-дми рКа, как это видно на примере глутаминовой кислоты 13,2). [c.329]

    Важно подчеркнуть, что в бактериальной клетке содержатся структуры и веш ества, которых нет у животных и растений, например, чередуюш,аяся последовательность ЛГ-ацетилглюкозами-на и iV-ацетилмурамовой кислоты не встречающаяся в составе белков а, е-диаминопимелиновая кислота 1)-формы аланина и глутаминовой кислоты. Эти структурные элементы составляют ахиллесову пяту бактерий, используемую врачами в борьбе с инфекцией. По компонентам и структуре клеточной стенки и биохимическим механизмам ее синтеза бактерии коренным образом отличаются от животных и растений. Поэтому лекарственные [c.12]

    Так, например, в разбавленных растворах пoли-L-глyтaминo-вой кислоты и поли-1,-лизина [23] переход спираль — клубок может быть вызван изменением величины pH. Поли-/,-лизин содержит аминогруппу в боковом радикале мономерного звена, положительно заряженную ниже pH =9,5 и нейтральную выше рН = = 10,5. Установлено, что спиральная форма существует только в незаряженном состоянии, так что при понижении pH происходит изотермический переход в форму статистического клубка. Подобно этому поли-/.-глутаминовая кислота обладает стабильной спиральной формой при pH гиже 5, когда карбоксильные группы боковых радикалов практически не ионизованы. Переход в форму статистического клубка происходит при повышении pH. [c.76]


Смотреть страницы где упоминается термин Формил глутаминовая кислота: [c.288]    [c.212]    [c.659]    [c.38]    [c.277]    [c.278]    [c.390]    [c.43]    [c.558]    [c.286]    [c.286]    [c.603]    [c.143]    [c.162]    [c.459]    [c.470]    [c.477]    [c.485]    [c.494]    [c.498]    [c.173]    [c.195]    [c.315]    [c.315]    [c.357]    [c.245]    [c.77]    [c.18]    [c.61]    [c.121]   
Биохимия аминокислот (1961) -- [ c.393 ]




ПОИСК





Смотрите так же термины и статьи:

Глутаминовая кислота



© 2025 chem21.info Реклама на сайте