Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактопласты свойства

Таблица HI.I. Прочностные свойства термопластов и реактопластов [19, 20 и др. Таблица HI.I. <a href="/info/110154">Прочностные свойства</a> термопластов и реактопластов [19, 20 и др.

    Для классификации полимеров можно применять разные критерии. Если проводить ее по поведению при нагревании, то-различают термопласты, которые при нагревании размягчаются,, а при охлаждении снова приобретают первоначальные свойства,, так что их можно формовать в любое время, и реактопласты (термореактивные полимеры), которые формуются только при-их получении, а в готовом виде не могут быть переведены с помощью нагревания в пластическое состояние. [c.285]

    Свойства. В отвержденном состоянии — реактопласты. Свойства сильно зависят от способа отверждения и вида наполнителей. Окраска изменяется от бесцветной до светло-коричневой. Не имеют запаха плотность (без наполнителя) 1,2—1,3 г/см горючие. В отвержденном виде имеют высокую адгезию по отношению почти ко всем материалам. Устойчивы к горячен воде, разбавленным растворам щелочей и кислот. [c.578]

    Допускаемые толщины стенок или деталей из реактопластов в зависимости от свойств материала и высоты стенок приведены в табл. 1.8. [c.29]

    В книге изложены физико-химические основы процессов взаимодействия полимеров с агрессивными средами, рассмотрено влияние этих сред на физико-механи-. ческие, теплофизические и электрические свойства термопластов, реактопластов, эластомеров, описаны различные способы оценки их химической стойкости по баллам и кинетическим параметрам, приведены обширные справочные данные о стойкости полимерных материалов в условиях воздействия на них агрессивных сред. [c.5]

    Для улучшения свойств вторичного полиэтилена в композицию на его основе вводят минеральные и органические наполнители, ПАВ и другие добавки. В качестве наполнителя могут быть использованы дисперсные отходы любой природы, например древесная мука, резиновая крошка или измельченные реактопласты. Так, Тушинский машиностроительный завод производит из отходов полиэтилена и резиновой крошки массивные блоки для переездов трамвайных путей. Основная масса изделия изготовляется прессованием смеси крупной крошки и [c.280]

    П.2.2. ИЗМЕНЕНИЕ СВОЙСТВ РЕАКТОПЛАСТОВ и 1.2.2.1. Фенопласты [c.105]

    Свойства. В отвержденном состоянии — реактопласты рабочая температура до 150 С. Имеют почти белую окраску плотность 1,2 г/см (при усилении стекловолокном 1,5—2,0 г/см ). Устойчивы по отношению к воде и разбавленным кислотам, малочувствительны к действию щелочей и органических растворителей. Обладают хорошими диэлектрическими и механическими свойствами (усиленные стекловолокном полиэфиры имеют сопротивление растяжению выше, чем у стали) атмосферостойки. [c.577]

    Великолепные свойства жестких и эластичных пенополиуретанов, а также вспененных эпоксидных смол и некоторых других реактопластов обратили на себя внимание многих фирм США ио выпуску оборудования для переработки пластмасс. Отличительной чертой переработки этих материалов является их ограниченная жизнеспособность , чем, в свою очередь, определяются конструктивные особенности оборудования [234]. Смешивание ингредиентов осуществляется, главным образом, в аппаратах непрерывного действия. Применяемое мешалки отличаются относительно простой конструкцией. Рабочие скорости их весьма велики и достигают 5 тыс. об/мин. Оборудование для формования пенополиуретанов фирмы выпускают в виде комплексных агрегатов, содержаигих устройства для перемешивания компонентов, транспортировки смеси и формования. Можно отметить два основных типа агрегатов для переработки пенополиуретана — это машины для формования блоков и изделий и устройства для нанесения покрытий. Формование блоков может осуществляться как в индивидуальных формах, так и непрерывно (в нескольких формах). При непрерывном получении пенополиуретановых блоков исходные компоненты подаются в цилиндрическую смесительную камеру, из которой через щелевой канал смесь поступает на непрерывно движущийся бумажный короб. При перемещении вместе с коробом смесь подвергается тепловому воздействию и вакуумированию в специальных камерах, при выходе из которых смесь оказывается полностью отвержденной. Производительность описанной установки достигает 75 кг мин плотность конечного продукта— 24 кг/м , максимальная ширина листов — 2 м. Непрерывное производство позволяет значительно улучшить качество готового продукта и стабилизировать его свойства. [c.194]


    Важнейшей особенностью феноло-формальдегидных реактопластов является их способность в сочетании с различными наполнителями — порошкообразными (древесной мукой, шифером и др.), волокнистыми (хлопчатобумажное, асбестовое, стеклянное волокно), тканями, в том числе стеклянной, образовывать наполненные реактопласты с широким диапазоном свойств. Прочность, характеризуемая удельной ударной вязкостью, достигается в древеснослоистых фенопластах 100 кг/см , а в стеклопластиках на основе стеклянной ткани 150 кг/см . [c.9]

    В технологии высокомолекулярных соединений делят полимеры на термореактивные (реактопласты), способные переходить при нагревании в неплавкие и нерастворимые материалы, и термопластические (термопласты), не обладающие таким свойством и не теряющие во время обработки своей способности формоваться (пластичности). [c.70]

    ПГ2.2. Изменение свойств реактопластов 105 [c.4]

    Перечисленные технологические приемы не проходят бесследно для комплекса физических и эксплуатационных свойств получаемых реактопластов. [c.27]

    Рассмотренные выше основные положения были развиты для саженаполненных вулканизатов, но могут быть перенесены и на процессы упрочнения термо- и реактопластов дисперсными наполнителями с учетом их физического состояния и изменения механизма разрушения при переходе из высокоэластического состояния в стеклообразное. Кроме того, при рассмотрении прочности на полненных полимеров мы основывались главным образом на физико-химическом поведении наполненных полимеров и их вязкоупругих свойствах. Механические же свойства порошкообразных наполнителей, как правило,, не учитывались, за исключением учёта эффекта возникновения пространственной сетки частиц наполнителя, прочность которой не может быть сопоставлена с механической прочностью наполнителя. [c.173]

    Прочность связи полимер-волокно лежит в основе главных свойств таких пластиков. Она определяется смачивающей или пропитывающей способностью связующего, величиной адгезии связующего к волокну, усадкой полимерной составляющей при ее отверждении (реактопласты) или затвердевании (термопласты), возможностью химического взаимодействия связующего и наполнителя, значением коэффициента объемного расширения компонентов пластика, относительной деформацией волокна и полимера под действием приложенной механической нагрузки. [c.57]

    Основными физико-химическими характеристиками отвердите-ля является его функциональность, то есть количество реакционно-способных групп и подвижных атомов, и молекулярное строение (алифатический или ароматический, расстояние между реакционными группами), включающее его молекулярную массу. От функциональности отвердителя зависит строение сетки отвержденного олигомера и соответственно свойства реактопласта. [c.27]

    Недостаток отвердителя приводит к резкому ухудшению физических свойств реактопласта, избыток — к его пластификации и, как следствие, к снижению теплостойкости и модуля упругости. [c.27]

    В зависимости от ММ эпоксидные смолы при Т = 20 С могут быть жидкими, вязкими или твердыми (табл. 14). Условия отверждения позволяют регулировать физическую структуру и свойства реактопласта. [c.50]

    ЦИКЛОВ демонстрируют весьма высокие свойства, существенно превышающие усталостную прочность металлов. Так, если предел выносливости качественной углеродистой стали 35А в этих условиях составляет величину порядка = (60-70) МПа, то для реактопласта АГ-4С = 130 МПа, для стекловолокнистого армированного материала СВАМ = (85-90) МПа, а для широко распространенного стеклонаполненного листового материала на основе СП-ПН-1 = (30-35) МПа (рис. 27). [c.100]

    Изменение механических свойств пластмасс оценивается в соответствии с ГОСТ 12020 по трехбалльной шкале. Хорошей (три балла) считается сопротивляемость, при которой прочность и деформируемость материала изменяются не более чем на 10 % (для реактопластов — 15 %). Удовлетворительной (два балла) считается стойкость, когда материал теряет по прочности до 15 % (реактопласты — до 25 %), а по деформируемости до 20 %. И, наконец, одним баллом (1 балл) характеризуются пластики, утратившие более 15 % (реактопласты — более 25 %) прочности и одновременно 20 % деформируемости. Оценка основных разновидностей полимерных пластиков по этому параметру при испытаниях в конкретных средах приведена в табл. 35. [c.116]

    Наполнители позволяют существенно улучшить механические характеристики эпоксидных смол [11 и снизить стоимость изделий [2]. Однако механизм действия твердых добавок на свойства реактопластов еще не ясен, что затрудняет практическое использование дисперсных наполнителей. Данные различных авторов по механическим свойствам наполненных эпоксидных компаундов противоречивы [3] и не дают оснований для общих выводов. [c.61]

    Если вязкоупругие свойства наполненных резин исследованы достаточно подробно, то значительно меньше изучены динамические свойства наполненных термо- и реактопластов. [c.138]

    Ведун1ее место в промышленности пластмасс США занимают термопласты, однако специфические свойства реактопластов на основе полиэфирных, эпоксидных, полиуретановых и других смол обеспечивают им широкое применение в различных отраслях промышленности. [c.166]

    Феноло-формальдегидные олигомеры и полимеры очень широко применяются в различных отраслях техники, особенно в электротехнике и приборостроении. В СССР выпускается более 20 марок олигомеров ново-лачного и резольного типа. Увеличивается также производство и расширяются области применения модифицированных феноло-формальде-гидных олигомеров и полимеров для лаков и клеев. Для их модификации используются нитрильные каучуки, полиамиды, поливинилхлорид, поли-винилацетали, эпоксидные, кремнийорганические и другие полимеры. Совмещенные материалы обычно обладают улучшенным комплексом технологических и физико-механических свойств. Продукты конденсации фенолов с формальдегидом, способные отверждаться при повышенных температурах, называют реактопластами в отличие от термопластов, не изменяющих своих свойств при нагревании. [c.9]


    Свойства. Реактопласт, рабочая температура использования 100—130 °С, других аминопластов — до 90 °С при более высоких температурах разлагаются. В отличие от фенопластов не имеют запаха, вкуса и цвета, хотя [c.579]

    Необходимость обеспечения безопасной и надежной работы деталей должна обязательно учитываться при выборе материалов и разработке изделий, приборов и станков. Это способствует дальнейшему развитию производства термореактивных пресс-комиози-ций, применяемых в. электротехнической иромышлеиности и приборостроении благодаря таким свойствам, как стойкость к действию высоких температур, огнестойкость и неплавкость. Несмотря на то, что литьевое формование является наиболее экономичным методом иереработки реактопластов, его дальнейшее развитие ограничивается низкой ударной прочностью, недостаточной способностью к окрашиванию и невозможностью утилизации отходов фенопластов. Недавно, однако, проблема утилизации отходов производства была решена путем применения обогреваемых литников, повторного использования измельченной в порошок оскребки и смешения ее с исходным материалом. [c.146]

    Основные виды реактопластов и особенности их свойств. После окончания формования изделий из реактопластов полимерная фаза приобретает сетчатую (трехмерную) структуру с высокой плотностью сетки (см. Трехмерные полимеры). Благодаря этому отвер- [c.319]

    Свойства. Линейные полиуретановые полимеры термопластичны, при образовании пространственных структурных сеток становятся высокоэластичными (см. 42,2) и приобретают свййства реактопластов. Свойства полиуретанов сильно зависят от природы исходных компонентов и введенных добавок. Часто получаются в виде вспененных материалов — пенополиуретанов. [c.580]

    Термореактивные полимеры состоят из макромолекул, соединенных поперечными ковалентными, то есть химическими связями. Такая сетчатая химическая структура необратима. Нагревание сетчатых полимеров приводит не к расплавлению, а к разрушению пространственной сетки, сопровождающемуся деструкцией. С точки зрения практической физики это означает, что реактопла-сты допускают лишь однократную переработку в изделия, которые формируются в результате химической реакции отверждения. Технологические и иные отходы производства практически не рецик-лируются. Вместе с тем сетчатая молекулярная структура придает полимерам ряд особых свойств, не наблюдаемых у термопластов. Так, густосетчатые термореактивные полимеры, например, полиэпоксиды, характеризуются повышенными значениями жесткости, модуля упругости, теплостойкости редкосетчатые реактопласты, основными представителями которых являются резины, обладают высокой деформативностью, стойкостью к истиранию, повышенным коэффициентом трения. [c.11]

    В термо- и реактопластах усиливающее действие наполнителей также связано с их влиянием на ориентацию и переходом полимера в тонкие пленки на поверхности [2]. Наполненные пластики могут рассматриваться как слоистые системы, состоящие из непрерывной фазы — полимера, ориентированного и фиксированного в виде тонких слоев на поверхности частиц наполнителя, и чередующихся слоев, или частиц наполнителя. Поэтому прочность наполненных пластмасс возрастает с увеличением активной поверхности до определенного максимума, соответствующего предельно ориентированному слою связующего. Влияние наполнителя на прочность, как и в случае резин, описывается с помощью статистической теории распределения внутренних дефектов в твердом теле. Усиливающее действие связано с изменением перенапряжений в вершинах трещин, с релаксацией напряжений и перераспределением их на большее число центров прорастания микротрещин. Это должно увеличить среднее напряжение, обусловливающее разрушение тела. Микротрещина, развиваясь в наполненном полимере, может упереться в частицу наполнителя, и, следовательно, для ее дальнейшего развития требуется увеличение напряжения. Чем больше в полимере наполнителя, тем больше создается препятствий для развития трещин, вследствие чего происходит торможение процесса разрушения. Можно также полагать, что в тонких слоях полимеров согласно статистической теории прочности должно наблюдаться уменьшение числа дефектов, приводящих к разрушению, и увеличение прочности будет пропорционально уменьшению толщины слоя. Это предположение проверялось Рабиновичем [542] на примере тонких пленок бутварофенольной смолы, однако различий в механических свойствах пленок разной толщины им обнаружено не было. [c.273]

    Ниже дается onii aini листовых слоистых реактопластов, выпускаемых в США, согласно требопаппям стандарта США i EMA-LI-l (от 1971 г.) п в его уточненной редакции R-1976 (от 1976 г.). Свойства этих пластиков приведены в табл. 12.1. [c.184]

    Различают полимерные покрытия на основе термопластичных (термопласты) и термореак тивных (реактопласты) полимеров [6, 25, 26, 40] Термопластичные полимеры при нагревании раз мягчаются и вновь затвердевают при охлажде НИИ, сохраняя свои первоначальные свойства Термореактивные полимеры при нагревании не обратимо изменяют свои свойства и переходят в неплавкое и нерастворимое состояние. [c.120]

    Полиамиды широко применяются для изготовления разъемных корпусов промышленных станков, бытовых приборов и т. п. взамен обычно используемых для этих целей реактопластов (например, фенолоформ-альдегидных смол). Это связано с тем, что полиамиды по теплостойкости, сопротивлению ударным нагрузкам и изоляционным свойствам значительно превосходят реактопласты. [c.222]

    Формование изделий и волокон из расплавов полимеров производят в вязкотекучем состоянии, т.е. выше температуры текучести (7 ), которая служит характеристикой термопластичности. В отличие от термопластичных полимеров (термопластов), у которых после нагревания и обратного затвердевания при охлаждении строение и свойства не изменяются, термореактивные полимеры (реактопласты) являются термоотверждаемыми. При нафевании такой полимер приобретает сетчатую структуру (сшивается) и теряет способность расплавляться и растворяться. При нафевании полимера до определенной высокой температуры, он претерпевает термическую деструкцию. Эта температура (Гдестр) характеризует термостойкость полимера. [c.157]

    Систематизированы сведения о химической стойкости термопластов, реактопластов, композиционных материалов, лакокрасочных покрытий И резин в агрессивных средах (водных растворах кислот, щелочей, солей, в газах и органических растворителях). Рассматривается влияние этих сред на свойства полимернкх материалов приводятся справочные данные по химической стойкости полимернШ материалов в агрессивных средах при разных температурах. [c.2]

    Химич. С. резин осуществляется с помощью сшивающих (присадочных) агентов — перекисей, диаминов, диазосоединений и др., способных быстро реагировать с функциональными группами макромолекул каучука (двойными связями, водородом а-мстиленовых Г1)упп и др.). На соединяемые поверхности наносят обычно р-ры этих агентов в инертных (ацетон, хлороформ) и,пи активных (напр., стирол) растворителях. Благодаря этому достигается более равномерное распределение сшивающего агента и упрощается ого дозирование. Резины из хлоропренового каучука, содержащего в макромолекуле подвижные атомы хлора, могут свариваться без применения сшивающих агентов. Важное значение при С. резин имеет подготовка соединяемых поверхностей, в частности очистка их от ингибиторов и др. ингредиентов, мигрирующих на поверхпость резины ири ее хранении. Темп-ра химич. С. резин определяется реакционной способностью сшивающих агентов. Давление С., зависящее от упруго-релаксационных свойств материала и от количества летучих продуктов в зоне соединения, составляет 1,0—2,5 Мн/м (10—-25 кгс/см ). Продолжительность процесса изменяется в тех л е пределах, что и при С. реактопластов. [c.191]

    Отверждение термореактивных клеев является, наряду с подготовкой поверхностей, наиболее важной операцией в технологии С. Выбор реншмов этого процесса (теми-ра, давление, продолжительность) зависит не только от ирироды клея, но и от типа соединяемых материалов и условий эксплуатации изделий. Соединения, образуемые эпоксидными и полиуретановыми кле-ялш при комнатной темп-ре, имеют высокую прочность. Повышение темп-ры отверждения этих клеев приводит к получению более тепло- и водостойкого соединения с лучшими электроизоляционными свойствами. При С. реактопластов феноло-формальдегидными, кремнийор-ганическими или полпимидными клеями обязателен нагрев зоны шва, способствующий ускорению отверждения, более полному удалению растворителя и образованию полимера с большей мол. массой. Выбор теми-ры С. термопластов зависит от их теплостойкости. Склеиваемые участки нагревают в термошкафу, контактными нагревателями, с помощью токов высокой частоты или ультразвука. [c.209]

    Однако, исследуя вопрос о повышении теплостойкости реактопластов увеличением густоты их пространственной сетки, необходимо помнить, что любое изменение структуры отзывается изменением не одного какого-либо свойства, но комплекса характеристик. Так, уменьшение М . кроме повышения теплостойкости приведет к охруп- [c.134]

    Затвердевание изделия начинается с поверхности. При этом термопласты охлаждаются ниже теми-ры стеклования, после чего изделие можно извлекать из формы. Отверждение реактопластов сопровождается повышением теми-ры. Скорость затвердевания материала в форме зависит от температуры формования, теми-ры стенок формы, а также от толгципы изделия п теплофи-зич. свойств материала. [c.37]

    Э.п.м. при переработке подвергаются нагреву, оказывающему особенно сильное влияние на электрич. свойства термореактивпых пластмасс. При отверждении реактопластов происходят дополнительное диспергирование наполнителя, умень иение толщины прослоек полимера между его частицами и увеличение числа контактирую]Цих друг с другом частиц. Все это способствует уменьшению р ,. При повторном нагревании материала на темп-рной зависимости р , появляется гис-терезисиая петля, к-рая вырождается от цикла к циклу (нагревание — охланодение). [c.478]


Смотреть страницы где упоминается термин Реактопласты свойства: [c.680]    [c.50]    [c.37]    [c.38]    [c.172]    [c.174]    [c.293]    [c.77]    [c.83]    [c.312]    [c.87]   
Технология пластических масс в изделия (1966) -- [ c.376 , c.377 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства реактопластов

Механические свойства реактопластов

Основные физико-механические свойства слоистых реактопластов

Реологические свойства реактопластов и резиновых смесей

Тепловые свойства реактопластов

Технологические свойства реактопластов

Технологические свойства реактопластов и методы их определения — Канавец



© 2025 chem21.info Реклама на сайте