Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термопластичные полимеры

    Основные термопластичные полимеры, используемые в виде водных дисперсий,— поливинилацетат и сополимеры винилацетата с такими мономерами, как винилхлорид, винилиденхлорид, дибутил-малеинат и винилпропионат полистирол и сополимеры стирола с различными акриловыми мономерами поливинилхлорид и сополимеры винилхлорида с такими мономерами, как винилиденхлорид и винилпропионат полиакрилаты и их сополимеры. [c.315]


    По отношению к температуре полимеры делятся на термопластичные и термореактивные. Линейные, разветвленные и лестничные полимеры могут многократно при нагревании размягчаться и твердеть при охлаждении без существенного изменения своих свойств. Такие полимеры называются термопластичными. Термопластичность обусловлена тем, что между макромолекулами полимера существуют только относительно слабые межмолекулярные связи универсальной и специфической природы. Эти связи, как известно, легко разрываются при нагревании и также легко восстанавливаются при охлаждении. К термопластичным полимерам относятся полиэтилен, полипропилен, полистирол, поливинилхлорид, фторопласт и др. Из гранул термопластичных полимеров можно изготовить после нагревания и размягчения изделие заданной формы, такие материалы можно сваривать простым нагреванием их соединения. Большинство [c.614]

    Полиметилметакрилат — прозрачный термопластичный полимер аморфной структуры, не кристаллизующийся даже при растяжении. Он растворяется в хлорированных и ароматических углеводородах, ацетоне, муравьиной и уксусной кислотах. При обычных температурах полиметилметакрилат устойчив к действию разбавленных кислот и щелочей, воды, спиртов, растительных и минеральных масел. [c.45]

    В аспекте аналогии могут быть интерпретированы опытные данные, полученные при псевдоожижении ферромагнитных частиц в переменном магнитном поле, где наблюдались п с е в -д о п о л и м е р н ы е структуры частицы выстраивались в цепочки вдоль силовых линий. При увеличении скорости ожижающего агента и такая структура слоя постепенно нарушалась, образуя обычный псевдоожиженный слой, — аналогично размягчению с ростом температуры и плавлению некоторых термопластичных полимеров. [c.490]

    Подшипник состоит из одного или нескольких древесных вкладышей (рис. 5.18), образующих поверхность трения, облицованных методом литья под давлением термопластичным полимером. Процесс изготовления вкладышей состоит из нарезки березовых заготовок, сушке и последующей пропитки с одновременным уплотнением. Для пропитки используются смеси из масла МС-20 и солей поливалентных металлов жирных кислот, например стеарата цинка, магния, кальция. [c.200]

    Изотактический полипропилен представляет собой твердый термопластичный полимер, выпускаемый в виде порошка белого цвета или гранул. [c.12]

    Непревращаемые пленкообразователи [95] — это термопластичные полимеры, полученные реакциями полимеризации (поливинилхлорид, полистирол, полиакрилаты, фторсодержащие полимеры) или поликонденсации (фенольные новолачные смолы, полиамиды), а так же эфиры целлюлозы. [c.121]


    Пентапласт — термопластичный полимер, содержащий 45,57о связанного хлора степень кристалличности достигает 30%, молекулярный вес — 250 000—400 000. Растворяется в циклогексане, диоксане, дихлорбензоле и диметилформамиде при нагревании. [c.51]

    Пентапласт обладает хорошими механическими и диэлектрическими свойствами, высокой химической и термической стойкостью. Отличается высокой водостойкостью и химической стойкостью при температурах 100 °С и выше, стойкостью к гидролизу в слабокислых и щелочных средах. По сравнению с большинством термопластичных полимеров пентапласт имеет достаточно высокую прочность при повышенных температурах вплоть до 120 °С. [c.51]

    Термопластичные (полимеры или сополимеры линейной структуры) при повышении температуры размягчаются, а при охлаждении вновь возвращаются в твердое состояние, сохраняя все свои прежние свойства растворимость, плавкость и пр. [c.189]

    ПЭ перерабатывается всеми методами, используемыми для переработки термопластичных полимеров литьем под давлением, экструзией и прессованием. Он легко сваривается, способен образовывать различные сополимеры. Благодаря широкому комплексу свойств ПЭ применяется во многих отраслях промышленности и народного хозяйства кабельной, радиотехнической, химической, легкой промышленности, в медицине и др. Из ПЭ изготавливаются различные изделия технического назначения, трубы, кабельная изоляция, упаковочный материал, [c.391]

    ПС перерабатывается в изделия всеми способами, используемыми для переработки термопластичных полимеров и окрашивается органическими красителями. Основным методом формования изделий из ПС является литье под давлением, реже используется экструзия, позволяющая получать пленки и нити Для повышения теплостойкости и механической прочности в ПС вводятся минеральные наполнители и стекловолокно. [c.396]

    Процессы и технология смешения порошковых систем. Хотя процессы смешения и приобрели большое значение в производстве и использовании термопластичных полимеров, изучены они недостаточно. [c.117]

    Кроме того, в работах [24-27] опубликованы результаты крупномасштабных сравнительных исследований битумов, модифицированных полимерами, и присадок, которые предлагаются на отечественном и зарубежном рынках. В обзоре [27] помимо составов, технологии получения и свойств композиций битумов с термореактивными и термопластичными полимерами, изложены составы и свойства нового класса композиций полимеров с высокомолекулярными соединениями нефти. [c.53]

    В разд. 7.1 был рассмотрен разрыв цепей термопластичных полимеров под действием напряжения. Показано, что разрыв цепи происходит всякий раз, как только межмолекулярные силы, действующие на плотно уложенные участки вытянутых (проходных) молекул, становятся достаточно большими, чтобы оказать такое сопротивление проскальзыванию сегмента в про- [c.213]

    Для склеивания дерева лучше пользоваться термореактивными полимерными клеями, так как их можно применять при менее высокой степени полимеризации, чем термопластичные, и, следовательно, менее вязкими. Благодаря этому они лучше смачивают материал и впитываются в его поверхность. Кроме того, дальнейшая полимеризация термореактивного клея приводит к образованию пространственного каркаса с более высокой механической прочностью, чем прочность связи между молекулами термопластичных полимеров, и более стойкого к повышенным температурам. [c.230]

    Полимеры обладают поразительно удачным сочетанием химических, физических и электрических характеристик, которые обеспечивают наиболее широкую сферу их применения по сравнению со всеми другими видами сырья, известными человечеству. Более того, способность термопластичных полимеров деформироваться при повышенных температурах и термореактивных — до того, как произошло их отверждение, позволяет изготавливать из полимеров множество готовых изделий, имеюш,их иногда очень сложную конфигурацию. [c.12]

    У существующих машин величина впрыска составляет от 5 г до нескольких килограммов, а усилие смыкания достигает 50 МН. Метод литья под давлением успешно применяется для переработки не только термопластичных полимеров, но и термореактивных поли- [c.22]

    При компрессионном формовании полость формы заполняется определенным количеством полимера, который не впрыскивается в закрытую форму, а приобретает конфигурацию полости формы под действием усилий, возникающих при смыкании половин формы (рис. 1.8). Сжимающее усилие, создаваемое гидравлическим прессом, прижимает порцию полимера к стенкам формы и заставляет полимер растекаться по форме, заполняя ее полость. Этот способ формования широко применяется для переработки термореактивных полимеров, хотя в принципе им можно пользоваться и для формования термопластичных полимеров. Тепло передается к полимеру от горячих стенок формы, вызывая протекание химических процессов полимеризации и поперечного сшивания. Загружать формы можно предварительно приготовленными навесками или таблетками из формуемого полимера или заготовками пластицированного полимера, выдавленными из червячного экструдера. [c.23]


    Следует отметить, что ортофосфорная кислота также способствует образованию термопластичного полимера (выше 200 С). [c.133]

    Для термопластичных полимеров следует повышать их адгезию к волокнам. При этом в процессе нагружения за счет деформации полимера снижается нагрузка на волокна. Для хрупких полимеров необходимы условия, обеспечивающие их отслоение для развития деформации в волокне. [c.560]

    Эти термопластичные полимеры (плавкие и растворимые), образующиеся в кислой среде при соотношении фенола и формальдегида 7 6, называются новолачными. Их образование можно выразить следующей схемой  [c.424]

    В пробирку помещают 1 г фенола и добавляют. 1 мл формалина (40%-ный раствор формальдегида в воде). Смесь нагревают 2—3 мин, приливают 2—3 капли концентрированной соляной кислоты. Нагревание прекращают после расслоения смеси. Воду сливают, а остаток выливают в фарфоровую чашку или на железный лист. Образуется твердый продукт — термопластичный полимер (новолак), растворимый в ацетоне. Чтобы превратить новолачный полимер в резольный, к нему добавляют 0,5 мл насыщенного раствора уротропина и осторожно нагревают, не доводя до осмоления. Через несколько минут в пробирке получается продукт ярко-желтого цвета — термореактивный полимер (это соединение можно также получить, взяв в избытке формалин). [c.74]

    Каркас из углеродного волокна влияет на м(зханизм развития трещин при нагружении и кристаллизацию термопластичных полимеров [9-65]. Введение дискретного углеродного волокна в полиэфирэфиркетон при повышенных температурах формования снижает скорость кристаллизации по-иимера. Это связано с его лучшей адгезией к поверхности углеродного волокна. Уменьшение скорости кристаллизации приводит к увеличению модуля сдвига при одинаковом значении напряжения сдвига. При снижении температуры формования наблюдается обратный эффект — увеличение скорости кристаллизации в связи с высокой теплопроводностью волокна. [c.560]

    Многие полимерные материалы обладают ценными химическими и физическими свойствами и успешно применяются в различных областях энергетической техники как конструкционные и электротехнические материалы. Для этой цели используются термопластичные и термореактивные полимеры. Из термопластичных полимеров широко применяют полиметилметакрилат (органическое стекло), полистирол, полиэтилен, винипласт (непластифицированный поливинилхлорид), полиизобутилен, капрон, фторопласт-4 (политетрафторэтилен), из термореактивных — фенопласты, получаемые на основе фенолоформаль-дегидной смолы аминопласты, получаемые на основе мочевино-формальдегидной смолы полиэфирные, эпоксидные и кремнийорганические полимеры. [c.337]

    Склеивание пластмасс производят разнообразными методами в зависимости от их сочетания. Остановимся лишь на простейшем случае — склеивании двух деталей, состоящих из одинакового термопластичного полимера. Известно два принципиально различных метода склеивания. Первый основан на использовании подходящих растворителей, которые наносят на склеиваемые поверхности в чистом состоянии или в виде раствора данного полимера. В обоих случаях необходим тщательный контроль за удалением растворителя во избежание последующего коробления, искривления материала или потери прозрачности и неравномерного распределения пластификатора, если такой содержится в полимере. [c.231]

    В зависимости от температуры термопластичный полимер находится в каком-ли<5о одном физическом состоянии стеклообразном, высо-коэластическом и вязкотекучем. [c.24]

    По отношению к нагреванию органические полимеры подразделяются на термопластичные, свойства которых обратимо изменяются прн многократных нагревании и охлаждении (при нагревании размягчаются, прп охлаждении снова затвердевают), и термореактивные. свойства которых при нагревании изменяются необратимо и не могут быть восстановлены при последующем охлаждении. Очевидно, что термопластичные полимеры при изменении температуры (и давления) меняют только свои физические свойства, а термореактив ые подвергаются необратимь(м химическим превращениям. [c.371]

    В период 1950—65 гг. вводятся в строй заводы по получению ионообменных смол (г. Н. Тагил), полиэтилена низкого давления (г. Охта), полиацеталей (г. Ереван), создаются производства ударопрочного полистирола и его сополимеров, пенополиуретанов (г. Рошаль) и др. В результате производство пластических масс в стране возрастает с 160 тыс. т в 1955 г. до 800 тыс. т в 1965 г. В последующие годы расширяется производство новых термопластичных полимеров и вводятся в строй крупные специализированные заводы по получению винилацетата, по-ливинилбутираля, полиэфиров, сополимеров стирола, акрилонитри-ла и бутадиена в г. Дзержинске, Н. Полоцке и других городах. Объем производства пластмасс достигает к 1970 году 1670 тыс. т. Одновременно возрастают единичные мощности установок и внедряются непрерывные процессы. Так, например, мощность установок по производству полиэтилена высокой плотности возрастает с 2—3 до 60 тыс. т в год, полиэтилена высокой плотности с 3 до 70 тыс. т, полистирола с 3 до 30 тыс. т в год. [c.383]

    Прочие процессы конверсии олефинов. Промышленно-коммерческая ценность конвертирования бутенов падает по мере уменьшения порядкового номера гомологического ряда. Помимо производства третичного бутилового спирта за счет гидратации изобу-телена и вторичного бутанола за счет гидратации нормального бутена основными химическими процессами переработки бутенов являются полимеризация и сополимеризация изобутилена для производства упруго- и термопластичных полимеров, которые известны на торговом рынке как бутиловая резина и вистанекс-резика. Бутадиен (двойной ненасыщенный четырехуглеродный углеводород) — главный мономер в производстве синтетической резины, или бутадиена-стирена, бутадиена-акрилнитрила и полибу-тадиенов. Так как потребность в мономерном бутадиене достаточно велика, то одним из основных продуктов переработки нормальных бутенов (нормального бутена-1 и нормального бутена-2) является производство бутадиена посредством дегидрогенизации. Основные процессы конверсии углеводородов с радикалами С4 и их относительная экономическая значимость приведены в табл. 51. [c.236]

    В результате полимеризации могут получаться высокомолекулярные вещества, обладающие пластическими свойствами (синтетические каучуки, полиизобутилен или оппанол, тиокол и т. д.), которые объединяют под названием эластомеров, или же твердые (растворимые или нерастворимые, плавкие или неплавкие) полимеры, известные под названием пластомеров. К последним относятся так называемые пластмассы (целлулоид, бакелиты, глифтали, коросил, полистиролы, акрилоиды и т. д.). Некоторые считают, что термопластичные полимеры—акрилаты и метакрилаты, полистиролы, поливиниловые эфиры и т. д.—занимают промежуточное место, и называют их эластопластиками [3]. [c.587]

    В связи с некоторыми их недостатками, например, высокой чувствительностью к температуре, натуральные каучуки применяются крайне редко. За рубежом в настоящее время при изготовлении модифицированных битумов используются в основном тер-моэластопластичные, а также некоторые термопластичные полимеры. Оптимальное содержание применяемых полимеров колеблется в пределах 2-20% масс, и основную роль в выборе количества вводимого модификатора играют экономичность, придание вяжущему заданных реологических параметров, а также вязкость при рабочих условиях. В больших количествах (до 25-30% масс.) к битуму добавляются только присадки, представляющие собой отходы, из-за их низкой стоимости. [c.52]

    К термопластичным полимерам относятся большая часть полиме-ризационных смол (поливинилхлорид, полиэтилен, полиметилметакрилат) и некоторые поликонденсационные смолы (новолачные фе-нолальдегидные смолы, линейные полиуретаны и др.). [c.224]

    Физико-химические воздействия жидких сред могут повлиять на начало роста, распространение или разрыв трещины серебра в термопластичном полимере. По-видимому, жидкость должна диффундировать в полимер, чтобы повлиять на начало роста трещины серебра. Нарисава [119] определил критические напряжения ст, образования таких трещин в тонких пленках ПС и ПК, находящихся в контакте с различными спиртами и углеводородами. Он наблюдал, что трещины серебра появляются без существенной задержки по времени и что о,- уменьшается с уменьшением длины цепи растворителя (от 45 до 20 МПа для ПС, от 70 до 50 МПа для ПК). На основании этих результатов он пришел к выводу, что слабое набухание микроскопического слоя поверхности материала является необходимым и достаточным условием, чтобы вызвать образование трещин серебра. Тот же автор получил критерий для ст в виде выражения (8.29) со значениями активационных объемов 1,0—1,3 нм , энергий активации 109—130 кДж/моль и констант скорости (1 —10)-10- С для ПС и (2—50) lO- с- для ПК- [c.386]

    По поведению при нагреве и охлаждении полимерные связующие принято разде.оять на термопластичные и термореактивные. Свойства термопластичных полимерных связуюпщх позволяют получать изделия из них литьем под давлением, экструзией, напылением и широко использовать при их изготовлении автоматизированное оборудование. Макромолекулы термопластичных полимеров имеют линейное строение и получаются из мономеров, имеющих по две функциональные группы, которые присоединяются друг к другу прочными ковалентными связями. Между собой макромолеку-лярные цепи связаны слабыми ван-дер-ваальсовскими силами. [c.74]

    В докладе представлены результаты исследования по созданию и изучению электрофизических свойств полимерных композиционных материалов на основе терморасширенного графита (ТРГ) и термопластичных полимеров - полиэтилена и тетрафторэтилена, а также на основе ПВХ - пластизоля и полисульфидного олигомера. Подобные композишш представляют интерес для решения технических задач защиты радиоэлектронной аппаратуры от воздействия электромагнитных излучений. [c.80]

    Композиты с наполнителем из ТРГ. Выполвен ряд работ по наполнению термопластичных и термореактивных полимеров (полиимидов, полиэфиров, полиэтилена) ТРГ или МСС, которое термически разлагается при горячем прессовании [6-134]. Форма пор ТРГ, которые образуются в результате изгиба слоев и их взаимного сцепления, позволяет осуществить их заполнение термопластичным полимером и обеспечить хорошую совместимость компонентов. Однако полного заполнения пор полимером не происходит. [c.362]

    Так как термопластичные полимеры не содержат в своем составе реакционноспособных групп, дальнейшее повышение адгезии может быть достигнуто за счет прививок функциональных групп или использования сополимеров термопластичное — термореактивное связующее. Предварительная обработка поверхности углеродного волокна эпоксидными смолами позволяе увеличить прочность при сдвиге КМУП с полисульфоновым связующим. По-видимому, это связано с предотвращением взаимодействия функциональных групп на поверхности волокна с влагой. Последняя препятствует адгезии полисульфона к поверхности УВ. Улучшение указанного показателя достигнуто при покрытии поверхности волокна полиимидными и фенольными смолами, а также стиролом и малеиновым ангидридом [9-59]. Термообработка после покрытия улучшает адгезию и прочност1> при сдвиге за счет снижения внутренних напряжений в поверхностных слоях связующего. [c.557]

    В бетоны вводят также растворимые в воде полимеры, например такие термореактивные полимеры, как фенолоформальдегид, моче-виноформальдегпд, меламиноформальдегид, и термопластичный полимер — поливиниловый спирт. [c.315]

    Пеностекло характеризуется особыми технологическими свойствами. Оно хорошо пилится, строгается, сверлится. Для приготовления твердых пен (например, пеностекло) твердое стекло нагревают вместе с газообразователем (карбонатами) до температуры, превышающей на несколько градусов температуру стеклования. При этом в результате термического разложения газообразователя образуется дно1ссид углерода (IV), вспенивающий стекло. После затвердевания образуется пеностекло. Аналогично получают и пенопласт. Твердый термопластичный полимер вместе с твердым и жидким газообразователем нагревают до температуры, на несколько градусов превышающей температуру стеклования. При этом газообразо-ватель вспенивает полимер. Образуются, как правило, не сообщающиеся между собой полости (ячейки) и небольшое количество ячеек, сообщающихся между собой. Пенопласты получаются также путем вспенивания вязких жидких композиций в процессе образования полимера, например пенополиуретан. [c.455]

    Карбамидные полимеры получают поликонденсацией мочевины (карбамида) С0(ЫН2)г и формальдегида СНаО. В зависимости от условий процесса можно получить как термопластичные полимеры, так и термореактиБНые. По сравнению с феноло-формальдегидными полимерами карбамидные полимеры устойчивы к действию света, более тверды и не имеют запаха. [c.204]


Смотреть страницы где упоминается термин Термопластичные полимеры: [c.51]    [c.23]    [c.71]    [c.213]    [c.402]    [c.407]    [c.229]   
Смотреть главы в:

Старение пластмасс в естественных и искусственных условиях -> Термопластичные полимеры


Общая химическая технология органических веществ (1966) -- [ c.389 , c.526 , c.531 , c.545 ]

Физико-химия полимеров 1978 (1978) -- [ c.50 ]

Новые линейные полимеры (1972) -- [ c.7 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.212 , c.214 , c.224 ]

Химия и технология плёнкообразующих веществ (1981) -- [ c.21 ]

Технология нефтехимического синтеза Издание 2 (1985) -- [ c.546 ]

Основы технологии переработки пластических масс (1983) -- [ c.10 ]

Производство волокна капрон Издание 3 (1976) -- [ c.33 ]

Высокомолекулярные соединения Издание 2 (1971) -- [ c.174 , c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Термопластичность



© 2024 chem21.info Реклама на сайте