Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон волновая природа

    При прохождении потока электронов (или других микрочастиц) через дифракционную решетку интенсивность этого потока в одних направлениях увеличивается, а в других уменьшается в соответствии с уравнением де Бройля. Интенсивность потока электронов определяет вероятность попадания электрона в различные участки экрана. Таким образом, распределение вероятности пребывания микрочастиц в пространстве описывается закономерностями, аналогичными закономерностям волнового движения. В этом проявляется двойственная корпускулярно-волновая природа микрочастиц — их корпускулярно-волновой дуализм. Волны де Бройля иногда называют волнами вероятности. [c.25]


    Волновая природа электронов была установлена, когда Дэвиссон и Джермер показали, что электроны дифрагируют на металлической фольге точно так же, как и рентгеновские лучи. Корпускулярно-волновой дуализм, обнаруживаемый электронами, присущ всем материальным объектам. Для больших объектов (например, бейсбольного мяча) корпускулярные свойства оказываются настолько преобладающими, что волновые свойства остаются незаметными. [c.376]

    Лекция I. Строение атома. Понятие о квантовой механике. Двойственная природа электрона., Волновы свойства электрона. Волновая функция. Электронная плотность. Характеристика состояния электронов системой квантовых чисел, их Физический смысл (X час). [c.178]

    Полинг (первым предположивший, что молекулы белков и нуклеиновых кислот имеют форму спирали, см. гл. 10) в начале 30-х годов разработал методы, позволившие при рассмотрении органических реакций учитывать волновую природу электронов. [c.161]

    Электронная микроскопия. В электронном микроскопе вместо световых лучей используется пучок быстрых электронов, что резко увеличивает разрешающую способность микроскопа и дает возможность непосредственно видеть или фотографировать коллоидные частицы. Возможность применения в этом случае потока электронов обусловлена тем, что электроны обладают одновременно как квантовой, так и волновой природой. Длина волны потока электронов составляет всего 0,02—0,05 А, т, е. меньше размеров [c.48]

    Из этого уравнения видно, что энергия электрона дискретна, т. е. существует ряд допустимых значений энергии, отличающихся друг от друга на определенные интервалы, кванты энергии. Промежуточные значения энергии невозможны, так как величина п должна быть обязательно целой. В соответствии с различными значениями квантового числа п электрон обладает энергией, отвечающей определенному уровню энергии (рис. 1.1). Исключение значения п = 0 соответствует невозможности обращения энергии электрона в нуль. Этот результат является общим и для более сложных квантовых систем, энергия которых даже при абсолютном нуле температуры не обращается в нуль, а имеет некоторое нулевое значение. Существование нулевой энергии частиц, находящихся в ограниченной области пространства, согласуется с корпускулярно-волновой природой микрочастиц и соотношениями (1.3). При к = О обращается в нуль импульс частиц, а следовательно, и его неопределенность. Поэтому условия (1.3) для частиц, локализованных в ограниченном пространстве, становятся невыполнимы. [c.16]

    Размеры атомов и ионов (радиусы атомов и ионов) Атомы и ионы не имеют строго определенных границ вследствие волновой природы электронов. Поэтому определяют условные радиусы атомов и ионов, связанных друг с другом химической связью в кристаллах. На рис. 9 представлена кривая, выражающая периодическую зависимость атомных радиусов от порядкового номера элемента 1. [c.30]


    О волновой природе электрона. У частиц малой массы движение и взаимодействие происходят по законам, отличающимся от законов классической механики. Как было установлено, электромагнитные колебания имеют двойственную природу. Такие явления, как интерференция и дифракция света, свидетельствуют о его волновой природе, а способность оказывать иа освещаемую поверхность механическое давление или вырывать с этой поверхности электроны (фотоэлектрический эффект) указывает иа его корпускулярную природу, т. е. позволяет рассматривать световое излучение как поток частиц, или квантов, названных фотонами. [c.26]

    Если с помощью (1.23) вычислить значения X для различных объектов, то окажется, что для макрообъектов эти значения исчезающе малы. Так, для частицы массой 1 г, движущейся со скоростью 1 см/с, = 6,6" 10 см. Волновые свойства макрообъектов ни в чем не проявляются. Если длина волны значительно меньше размеров атома (10 см), то невозможно построить дифракционную решетку или какое-либо другое приспособление, позволяющее обнаружить волновую природу частицы. Иное дело — микрочастицы. Так, для электрона, ускоренного потенциалом в 1 В (и = 5,93-10 см/с), Я, = 1,23-10-7 см. [c.18]

    Волновые свойства электрона обнаруживаются в упомянутом выше явлении дифракции электронов. Явление дифракции (см. курс физики) было хорошо известно для световых лучей, для рентгеновских лучей и других электромагнитных колебаний. Дифракция обусловливается волновой природой этих лучей. Поэтому существование дифракции электронов подтверждает наличие у них волновых свойств. Это явление, теоретически описанное де-Бройлем (1924), было экспериментально обнаружено Дэвиссоном и Джермером (1927). В СССР оно впервые было исследовано П. С. Тартаковским в том же году. [c.44]

    Количество взаимодействующих атомных орбиталей не влияет на ширину зоны, а определяет лишь плотность ее заполнения электронами. Ширина энергетических зон в твердых телах существенно зависит от внутренней структуры их кристаллов. Эта зависимость тесно связана с волновой природой движения электронов. Перемещаться по кристаллу способны лишь те электроны, длины волн которых не укладываются целое число раз между узлами кристаллической решетки. Электроны с длиной волны, равной (2а//г), где а — постоянная решетки, будут находиться в кристалле в условиях замкнутого отражения и не способны переносить энергию. [c.83]

    Из курса физики известно, что свет обладает двойственной природой волновой и корпускулярной. Такие явления, как дифракция света, интерференция, свидетельствуют о его волновой природе. Явление фотоэффекта (отрыв от поверхности вещества электронов под воздействием света) дает представление о его корпускулярной природе. [c.173]

    Не принимая во внимание волновой природы частиц, позитроний можно представить в виде электрона и позитрона. Позитрон — частица, по массе близкая к электрону, но имеющая положительный, а не отрицательный заряд. Позитроний — движущиеся вокруг общего центра тяжести электрон и позитрон. Позитроний состоит из электронно-позитронной оболочки и не имеет ядра. Позитроний имеет короткое время жизни около 10 —10 ° с и исчезает (аннигилирует) с испусканием фотонов. [c.88]

    Как известно, электрон имеет одновременно корпускулярную и волновую природу. Согласно принципу неопределенности В. Гейзенберга, нельзя определить местоположение электрона в данный момент. Можно говорить лишь о вероятности пребывания электрона в определенном элементе объема вокруг ядра атома, называемом электронным облаком, пли атомной орбиталью (АО). Если электрон описать волновой функцией -пЧ о то вероятность его обнаружения в объеме о т будет равна [c.24]

    Будем считать, что в условиях эксперимента проявляется только волновая природа электрона. Тогда можно рассматривать задачу о рассеянии электронов на совокупность препятствий (или щелей), расположенных в пространстве определенным образом. Выясним некоторые принципиальные характеристики электрона-волны. Длину волны электрона можно вычислить из соотношения де Бройля и закона сохранения энергии  [c.129]

    Казалось бы, не могло быть сомнения в волновой природе света, о которой свидетельствовали многочисленные явления дифракции. Однако фото- и комптон-эффекты противоречили этому представлению. Основная особенность фотоэффекта заключается в том, что энергия электрона, вылетающего из металла под влиянием освещения, не зависит от интенсивности света. Оказалось, что энергия этого электрона зависит лишь от частоты падающего на металл света. С классической точки зрения эти закономерности не понятны. Упруго связанный в металле электрон должен был раскачиваться полем света, и энергия, им воспринятая, должна была бы зависеть от интенсивности света. [c.425]

    Дуализм волна—частица . Новые представления о природе электрона берут свое начало в известной полемике о сущности лучистой энергии, которая велась в течение длительного времени такими выдающимися исследователями, как Гюйгенс, Ньютон, Юнг и Френель. К началу XX в. считалась установленной волновая природа излучения точно так же, как веком раньше общепризнан был его корпускулярный характер. В 1905 г. для объяснения фотоэлектрического эффекта Эйнштейну пришлось вновь вернуться к представлению о фотонах как световых частицах. Таким образом, с новой остротой встал вопрос что такое свет—волны или частицы  [c.162]


    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    В настоящее время дифракция электронов широко используется для изучения структуры веществ. Прибор для наблюдения этого явления - электронограф - стал обычным прибором в физико-химических лабораториях. Для структурных исследований применяется также дифракция нейтронов. Изучена дифракция атомов гелия, молекул водорода и других частиц. Таким образом, двойственная корпускулярно-волновая природа микрообъектов является надежно установленным фактом. [c.19]

    Существование у частиц нулевой энергии является одной из характерных черт микромира. Это связано с корпускулярно-волновой природой микрочастиц. Общий характер данной закономерности следует из соотношения неопределенности. Мы видели (см. стр. 28—29), что локализация электрона в некоторой области пространства обусловливает появление у него некоторого импульса и, следовательно, кинетической энергии, которая тем больше, чем более ограничено движение электрона. То же можно сказать и о любой другой микрочастице.Не существует такого состояния вещества, в котором кинетическая энергия его частиц была бы равна нулю. Даже при температуре абсолютного нуля не только электроны, но и атомы в целом будут находиться в непрерывном движении, совершая колебания около положения равновесия. [c.31]

    Волновая природа электрона [c.44]

    Атомы всех элементов, кроме атома водорода, так же, как молекулы и кристаллы, — многоэлектронные системы. При рассмотрении много-электронных систем мы должны принимать во внимание фундаментальный закон природы, открытый В. Паули (1925) при изучении атомных спектров, принцип антисимметрии электронных волновых функций, или принцип Паули. [c.40]

    Для макрообъектов длина волны чрезвычайно мала и волновые свойства не проявляются. Например, в случае частицы массой в 1-10-3 движущейся со скоростью 1 м/с, А,= 10- нм. Другое дело в случае микрообъектов. Например, для электронов с энергиями от 1,60-10- до 1,60-10 Дж (от 1 до 10 000 эВ) длины волн де Бройля лежат в пределах (1н-0,01) нм, т. е. в интервале длин волн рентгеновского излучения. Для них волновая природа обнаруживается достаточно четко.. Первое экспериментальное подтверждение гипотезы де Бройля было получено в 1927 г. в опытах по-дифракции электронов на монокристалле никеля и по дифракции электронов,, движущихся в поле "с ускоряющим потенциалом, на монокристалле никеля и поликристаллических пленках алюминия и золота. В первом случае при напряжении порядка 100—200 В длина волны становилась соизмеримой с раз- [c.46]

    Теория абсолютных скоростей реакций позволила установить новые факторы, обусловливающие специфику механизма, а следовательно, и всего хода химического процесса. Наиболее важным из этих факторов является волновая природа электронов связей, определяющая как особенности месторасположения реакционных центров в молекуле реагента, так и характер взаимодействия данного реагента с сореагентом, в том числе конфигурацию активированного комплекса. Вместе с тем нельзя не признать, что теория [c.115]

    Таким образом, двойственная корпускулярно-волновая природа электронов является надежно установленным экспериментальным фактом.  [c.43]

    Размеры атомов и ионов (радиусы атомов и ионов). Атомы и ионы не имеют строго определенных границ вследствие волновой природы электронов. Поэтому определяют условные радиусы атомов и ионов, связанных друг с другом химической связью в [c.27]

    Если электронам свойственна волновая природа, то они должны проявлять свойства, характерные для движения волны (дифракцию и интерференцию). Как удалось показать Дэвиссону и Джермеру, в действительности поток электронов, проходя через кристаллическую решетку, претерпевает, подобно рентгеновским лучам, дифракцию (рис. 16). По расположению дифракционных колец измерили длину волн, которая оказалась в согласии с величинами, вычисленными по уравнению (1.37). [c.33]

    Контуры этой молодой науки были определены представлениями о волновой природе электрона и формулировкой закона сохранения энергии на квантово-механическом языке в виде знаменитого уравнения Шредингера. [c.32]

    Кроме идеи о волновой природе материи, Шредингера привлекла в работе де Бройля оригинальная, интерпретация квантовых условий Бора — Зоммерфельда (5). По де Бройлю устойчивыми будут-лишь те орбиты, в которых укладывается целое число волн (рис. 6). Иными словами, длина устойчивой орбиты (/) должна быть целым кратным длинц волны электрона 1 = пК (где /I —целое). Тогда, подставляя в [c.29]

    Учитывая волновую природу электрона, надо полагать, что этот интеграл везде отличен от нуля, но мы пренебрегаем этим, строго локализуя электрон только на вполне определенной атолгаой орбитали. [c.46]

    На базе представлений о волновой природе электрона была развита волновая механика. Наибольшие заслуги в разработке этой теории принадлежат физикам-теоретикам Вернеру Гейзенбергу, Эрвину ГЦредингеру и Полю Дираку. [c.56]

    Теперь дифракция электронов широко используется для изучения структуры вещества (см. стр. 123—129) установка, в которой наблюдается это явление, — электронограф — стала обычным прибо ром в физико-химических лабораториях. Для структурных исследова ний применяется также дифракция нейтронов. Была г зучена дифрак ция атомов гелия, молекул водорода и других частиц. Таким образом двойственная корпускулярно-волновая природа материальных час тиц является надежно установленным экспериментальным фактом Если бы мы с помощью (1.40) вычислили значения К для различных объ ектов, то обнаружили бы, что для макрообъектов они исчезающе малы Так,, для частицы с массой 1 г, движущейся со скоростью 1 см/с к = 6,6- 10"2 см. Это означает, что волновые свойства макрообъектов ни в чем не проявляются если длина волны значительно меньше раз меров атома (10" см), то невозможно построить дифракционную ре шетку или какое-либо другое приспособление, позволяющее обнару жить волновую природу частицы. Иное дело — микрочастицы. Так движение электрона, ускоренного потенциалом в 1 В (у=5,93х ХЮ см/с), связано с X = 1,23-10" см. [c.25]

    В методологическом отношении можно указать па два порока этой теории. Первый из них состоит в том, что представления о волновой природе валентных электронов привлечены в ней всего лишь для показа принципиальной возможности постепенного разрушения исходных и образования новых. химических связей. Но никакой рабочей нагрузки на этот важный фактор химического взаимодействия теория не возлагает модели активированного комплекса в ней экспериментально не проверяемы, спекулятивны. Второй порок теории абсолютных скоростей реакций заключ1ается н ее полнейшей непригодности для моделирования многокомпонентных кинетических систем, ибо любая п-компонентна я система должна содержать по меньшей мере 2" только одних биноминальных подмножеств пипотетических активированных ком111лексов. [c.116]

    В основе современного учения о строении атома лежат представления квантовой механики о двойственной корпускулярно-волновой природе микрочастиц. Элементарные частицы, например электроны, наряду со свойствами вещества, обладают и свойствами электромагнитного поля. Это проявляется, с одной стороны, в таком явлении, как фотоэффект и эффект Комптона, а с другой,— в способности потока микрочастиц к дифракции (огиба]ние преград волнами) и интерференции (наложению волн). [c.12]

    Признание волновых свойств у электрона и у других частиц микромира поставило перед физикой необычайно сложные проблемы одна из наиболее трудных — природа волн де Бройля. Гипотезу, признававщую электрон волновым пакетом , пришлось оставить. Пакет обязательно расплывается по мере движения, к электрон должен был бы терять свои корпускулярные свойства. М. Борн выдвинул ставшее почти общепризнанным представление, согласно которому волна, соответствующая электрону (будем иметь в виду под этим словом вообще субатомную частицу), представляет собой изменение вероятности найти электрон в данном месте пространства. Вероятность — величина положительная, поэтому, если волна де Бройля выражается периодичесной (волновой) функцией г)7, то мерой собственно вероятности будет т 5 или произведение г г1з , где г]) — комплексно сопряженная функция.. С этой точки зрения можно говорить о наложении (суперпозиции) плоских волн. Попытка определить местонахождение (координату) электрона ведет к поразительным выводам. [c.29]

    Принятие илн непринятие основных постулатов квантовой механики зависит от всей совокупности опытных данных, относящихся к микромиру, и, хотя дифракция электронов весьма убедительно свидетельствует в пользу представлений де Бройля, все же остается несомненным, что волномеханический аспект должен привести и к прогнозам, имеющим более прямое и непосредственное отношение к вопросам химии. Одним из таких открытий является туннельный эффект, значение которого мы еще подчеркнем в дальнейшем. Другое важное явление, имеющее квантовую природу и совершенно неожиданное с точки зрения теории Бора, — это сверхтонкое взаимодействие. Волновая природа электрона проявляется в том, что электрон некоторое время проводит около ядра это влечет за собой различные последствия расщепление спектральных линий или даже полный захват электрона ядром, а также проявление магнитных взаимодействий на малых расстояниях. [c.76]


Смотреть страницы где упоминается термин Электрон волновая природа: [c.20]    [c.206]    [c.42]    [c.30]    [c.14]   
Общая и неорганическая химия Изд.3 (1998) -- [ c.17 ]

Теоретическая неорганическая химия Издание 3 (1976) -- [ c.38 , c.40 , c.41 ]

Теоретическая неорганическая химия (1969) -- [ c.44 ]

Теоретическая неорганическая химия (1971) -- [ c.43 ]

Теоретическая неорганическая химия (1969) -- [ c.44 ]

Теоретическая неорганическая химия (1971) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Волновое электронов

Электрон природа



© 2025 chem21.info Реклама на сайте