Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свет — это волна

Рис. 20. Поглощение света 0,01—молярным раствором галоида в четыреххлористом углероде в зависимости от длины волны. Толщина слоя составляет для раствора хлора—2 см, для раствора брома — 0,5 см и для раствора иода —0,1 см. Рис. 20. <a href="/info/6122">Поглощение света</a> 0,01—<a href="/info/8327">молярным раствором</a> галоида в <a href="/info/1356">четыреххлористом углероде</a> в зависимости от <a href="/info/2957">длины волны</a>. <a href="/info/3695">Толщина слоя</a> составляет для <a href="/info/377657">раствора хлора</a>—2 см, для <a href="/info/220160">раствора брома</a> — 0,5 см и для раствора иода —0,1 см.

    Первоначально свойства и поведение поляризованного света интересовали исключительно физиков. Однако в 1815 г, французский физик Жан Батист Био (1774—1862) показал, что при прохождении поляризованного света через некоторые кристаллы происходит поворот плоскости колебаний (плоскости поляризации) световых волн. В одних случаях она поворачивается по часовой стрелке (правое вращение), в других — против часовой стрелки (левое вращение). К числу кристаллов, обладающих указанным свойством,— оптической активностью, относятся и кристаллы ряда органических соединений. Белее того, некоторые из этих органических соединений, например различные сахара, оптически активны и в растворах. [c.86]

    Дуализм волна—частица . Новые представления о природе электрона берут свое начало в известной полемике о сущности лучистой энергии, которая велась в течение длительного времени такими выдающимися исследователями, как Гюйгенс, Ньютон, Юнг и Френель. К началу XX в. считалась установленной волновая природа излучения точно так же, как веком раньше общепризнан был его корпускулярный характер. В 1905 г. для объяснения фотоэлектрического эффекта Эйнштейну пришлось вновь вернуться к представлению о фотонах как световых частицах. Таким образом, с новой остротой встал вопрос что такое свет—волны или частицы  [c.162]

    Исходя из известной в механике аналогии между траекториями частиц и световыми лучами с одной стороны и из установленной к тому времени двойственной природы света (волна — фотоны) и положений теории относительности, де Бройль высказал идею о двойственной природе электрона и вообще всех частиц (1923). Согласно де Бройлю, устанавливается соответствие между движением частицы и распространением некоей волны, причем величины, описывающие волну, должны быть связаны с динамическими характеристиками частицы соотношениями, которые содержат постоянную Планка /г .  [c.7]

    При облучении светом элементов в парообразном состоянии наблюдается обратная картина свет определенных длин волн не излучается, а поглощается. Более того, поскольку как поглощение, так и излучение света обусловлено одними и теми же процессами, протекающими в противоположных направлениях, то пары поглощают излучение с точно теми же длинами волн, какие наблюдаются в других условиях при испускании излучения. [c.102]

    Источник света волны излучения, Длительность импульса, с Дж фото- [c.209]

    Таким образом, результаты двух независимых экспериментов убедительно подтверждают представления о квантовой природе света. Однако существует много других экспериментов, в которых свет проявляет волновые свойства. Но споры о том, представляет ли собой свет волны или фотоны, давно улеглись, потому что было найдено удобным использовать оба эти представления. При взаимодействии с макроскопическими объектами свет проявляет такие свойства, что его можно рассматривать как волновой процесс, но при взаимодействии света с атомами или при образовании света атомами удобнее пользоваться представлением о фотонах. В следующей главе мы убедимся, насколько важную роль играют представления о квантовании энергии и о фотонах при описании строения атома. [c.66]


    Обыкновенный же луч (II) может испытать на границе кристал—клей полное внутреннее отражение, если угол падения будет больше предельного. Последнее обеспечивается соответствующим положением николя по отношению к источнику света. Полностью отраженный обыкновенный луч поглощается зачерненной боковой поверхностью николя и из призмы выходит один необыкновенный луч, несущий свет, волны которого колеблются в одной единственной плоскости и который [c.134]

    Обыкновенный же луч может испытать на границе кристалл — клей полное внутреннее отражение, если угол падения будет больше предельного. Последнее обеспечивается соответствующим положением николя по отношению к падающим от источника света лучам. Полностью отраженный обыкновенный луч поглощается зачерненной боковой поверхностью николя, и из поляризатора выходит один (необыкновенный) луч, несущий свет, волны которого колеблются в одной плоскости. Таким образом, задача получения плоскополяризованного света оказывается технически решенной. [c.128]

    Сегодня мы уже знаем, что излучение света атомами обусловлено определенными явлениями, связанными с их структурой. В атомах каждого элемента эти явления протекают по-своему. Следовательно, каждый элемент испускает набор излучений только определенных длин волн. [c.102]

    Стекла, применяемые для сигнальных огней, должны давать резкий, отчетливый свет. Нужно исключить возможность ошибочного восприятия сигнала даже в условиях плохой видимости, даже при больших скоростях транспорта и несовершенстве человеческого зрения. А для этого необходимо, чтобы стекла световых сигнальных устройств пропускали только свет волны точно определенной длины. [c.35]

    Поглощение веществом из падающего света волн определенной длины обусловливает окраску вещества. [c.30]

    Частота колебаний и длина волны связаны соотношением XV = с, где с — скорость света (3-10 м/с). [c.10]

    Механизм фотораспада поливинилхлорида строго не доказан. Принято считать, что он аналогичен механизму термораспада [12, 14]. Из работ, посвященных изучению фотораспада поливинилхлорида, следует, что при действии света в ультрафиолетовой области спектра имеют место, в основном,те же явления, что и при нагревании полимера. Основными направлениями распада остаются дегидрохлорирование, окисление, деструкция и структурирование скорость фотораспада в присутствии кислорода больше, чем в нейтральных средах или в вакууме в присутствии кислорода преобладают реакции деструкции, следствием которых является уменьшение молекулярного веса полимера в инертных средах или вакууме преобладают процессы структурирования, в результате которых образуется трехмерный нерастворимый полимер [3, 12, 27, 36—46]. После облучения полимер становится менее термостабильным (рис. 67 и 68). Это явление последействия может быть объяснено образованием в процессе облучения свободных радикалов, способных инициировать термо- и термоокислительный распад. В табл. 12 приведены значения скорости дегидрохлорирования поливинилхлорида при облучении ультрафиолетовым светом волн различной длины [42]. [c.141]

    А — поляризованный свет а — обычный свет — волны колеблются во всех плоскостях б — поляризованный свет — волны проходят только в одной [c.21]

    Однако при больших концентрациях частиц между ними возникает сильное взаимодействие, которое приводит к интерференции рассеянных волн. При этом интенсивность рассеянного средой света вычисляется путем сложения амплитуд волн, рассеянных отдельными частицами. Такая интерференция называется внешней. Когда размер частиц соизмерим с длиной волны падающего света, волны, рассеянные разными частями молекулы, будут отличаться по фазам, следовательно, будут интерферировать. В этом случае интерференция называется внутренней. [c.128]

    Уже давно Гюйгенс высказал взгляд, что свет следует рассматривать как некоторое волнообразное возмущение. От источника света волнами расходятся колебания гипотетической среды, восполняющей все пространство— невесомого эфира. Лучепреломление, интерференция, дифракция были весьма удовлетворительно объяснены с точки зрения волновой теории света. [c.39]

    Свет — волна и частица одновременно [c.22]

    Световые волны — это не волны на поверхности, а потому колебания в них не должны происходить обязательно в направлении вверх-вниз. Число направлений, в которых колебания световых волн могут происходить под прямым углом к направлению их распространения, практически бесконечно. В луче обычного света ни одно из направлений колебаний не является предпочтительным Однако если такой луч света пропустить через некоторые кристаллы, то упорядоченное расположение атомов в кристалле заставит световые колебания происходить только в какой-то определенной плоскости — в плоскости, которая позволяет лучу проходить и обходить ряды атомов. [c.86]

    Представлялось весьма вероятным, что темные линии в спектре Солнца обусловлены тем, что испускаемый раскаленной солнечной поверхностью свет поглощают газы более холодной солнечной атмосферы. Пары веществ (химических элементов), находящиеся в атмосфере Солнца, также поглощают свет определенных длин волн, и по положению возникающих темных линий в спектре можно судить, какие элементы находятся в атмосфере Солнца. [c.102]


    Казалось естественным предположить, что катодные лучи представляют собой какую-то форму света, обладающую волновым характером. Волны, подобно свету, распространяются прямолинейно и, подобно свету, не испытывают влияния сил тяготения. В то же время катодные лучи вполне могут представлять собой частицы, движущиеся с огромной скоростью. Поскольку масса этих частиц чрезвычайно мала или поскольку они движутся чрезвычайно [c.147]

    V — частота света, которая связана с длиной волны Я н ско- [c.138]

    Можно определить, какую минимальную длину волны должен иметь применяемый свет для того, чтобы обеспечить передачу того количества энергии, которое необходимо для диссоциации молекулы хлора на атомы.  [c.141]

    Ионизирующее излучение (гамма- и рентгеновские лучи) обладает такой энергией, что способно выбить из молекулы электроны с образованием ионов. Инфракрасное излучение обладает низкой энергией и при взаимодействии с молекулами вызывает колебательные и вращательные эффекты. Электромагнитное излучение в близкой ультрафиолетовой и видимой областях спектра (240—700 нм) взаимодействует с электронами молекулы. Ниже 240 нм ультрафиолетовый участок спектра задерживается озоном иа уровне 20—30 км от Земли. При поглощении света с длиной волны менее 800 нм изменяется электронная, вращательная и колебательная энергия молекул, что приводит к возбужденному состоянию молекул. [c.26]

    Фотодиссоциация диоксида серы, выделяемого в атмосферу, невозможна, так как она может протекать лишь при длинах волн короче тех, которые достигают нижней атмосферы. Поэтому фотохимические превращения диоксида серы обусловлены реакциями его возбужденных молекул, образующихся при поглощении света в области 290—340 нм. [c.32]

    А [Па]. Можно показать, что свет с такой длиной волны подводит около 90 ккал/г-мол энергии [c.142]

    Хлор поглощает свет в области длины волн 2500—4500 А. Общие сведения о длинах электромагнитных волн разного типа приведены в табл. 62 [12]. Отсюда видно, что хлор поглощает лучи в ближнем ультрафиолете и в фиолетовой области видимого спектра. [c.142]

    Инфракрасный свет короткие волны [c.143]

    Это обстоятельство является неожиданным, поскольку давно известно, что ультрафиолетовые лучи, а также свет более длинных волн сильно ускоряют процесс хлорирования [6]. [c.362]

    Так как свет длиной волны 4000—4360 А дает еще лучшие результаты, надо полагать, что некоторую роль играют процессы сенсибилизации, в ТО время как через посредство абсорбированной молекулы хлора возбуждается молекула 502. Хлор, абсорбированный световыми лучами [c.363]

    При длине волны поглощаемого света 499,5 нм наблюдается переход полосатого спектра в сплошной, что как раз и соответствует процессу диссоциации молекулы иода. Зная Я, при которой происходит диссоциация, нетрудно вычислить энергию [c.145]

    Как видно из рис. 219, это соответствует поглощению света с длиной волны 500 нм. Таким образом, растворы [Т1(0Н г) в] " поглощают желтые лучи, пропускают синие и красные, поэтому окраска растворов оказывается фиолетовой. [c.517]

    В одних опытах свет проявляет волновые, в других— квантовые свойства. Не имеет смысла спрашивать что же такое свет — волны или кванты Тут нет или . И то и другое. Нельзя описать свойства света однозначно, пользуясь повседневньши представлениями, относящимися к телам, очень большим по сравнению с атомами и электронами. Только кваятовая механика дает полное объяснение свойств вещества, состоящего из атомных ядер и электронов, и света. В наглядном выражении это объяснение требует двойственности, двузначности. Ничего не поделаешь. Физиков это не смущает. [c.34]

    Возможен и другой механизм образования нерастворимого каучука. Он, повидимому, и имеет место при переходе растворимой золь-фракции в нерастворимый продукт под действием света. Волны определенной длиньг вызывают сначала процесс фотохимической диссоциации линейных молекул обрывки их, обладающие на концах овободньг.ми валентностями (свободные радикалы), присоединяются по месту двойных связей других люлекул. Поскольку соединение может происходить bi различных точках молекулярных цепочек, в конце концов образуется единая сетчатая структура — гель, заполняющий все пространство, доступное для данного процесса. Для такой системы са.мое понятие молекулы, как понятие, определяющее кинетическую отдельность, становится неприложимым. Такая структура исключает самопроизвольный переход возникшего гель-каучука в раствор, обусловливая лишь его ограниченное набухание. Растворение гель-каучука может быть только вынужденным процессом. Оно происходит либо благодаря процессу окислительной деструкции, когда отщепляются отдельные линейные или незначительно разветвленные участки геля, либо вследствие энергичного теплового или. механического воздействия, когда отщепляются массивные частички коллоидного размера. В последнем случае будет наблюдаться новый тип дисперсных систем поскольку отдельные частицы не являются молекулами в обычном понимании этого слова и в то же время не являются агре-гата.ми этих. молекул, связанными сила.ми ван-дер-ваальсовского притяжения 1. [c.275]

    Так как энергии диссоциации углерод — углеродных и углерод—кислородных ковалентных связей составляет около 80 ккал, а энергия света в далеком ультрафиолете соответствует приблизительно 112 ккал на моль, то кажется мотивированным вывод о том, что фотоны из далекого ультрафиолета могут сами по себе вызвать расщепление целлюлозной макромолекулы. Энергия в близком ультрафиолете (388 до 385 ыа), составляющая от 73 до 74 ккал, по-видимому, недостаточна, и, чтобы она стала эффективной, требуется промежуточная реакция с участием кислорода [319]. Хотя озон образуется тогда, когда кислород облучается коротковолновым (323 М(1) ультрафиолетовым светом, он разлагается более длинными волнами (оранжевый свет 601 мр.) [328] и, следовательно, вряд ли играет роль в обсуждаемых опытах. С другой стороны, растворы перекиси водорода неустойчивы при коротких волнах в 250—300 ми, но перекись водорода свободно образуется, когда акцептор, в данном случае пода, облучается фиолетовым светом или близким к ультрафиолетовому (от 400 до 470 ма) в присутствии кислорода и сенсибилизатора. Окись цинка, которая поглощает свет в 385 ма, является хорошим сенсибилизатором, особенно в щелочной среде, а глицерин, глюкоза и бензидин известны как акцепторы [329, 330]. Общеизвестно, что пряжи, подвергнутые для удаления блеска обработке двуокисью титана, которая поглощает свет волн таких же длин, особенно подвержены фотохимической деградации в присутствии кислорода и влаги. Роль перекиси водорода в таких деградациях стала весьма вероятной благодаря ценным опытам Эгертона [331],- который попеременно облучал в течение 43 дней на солнце нити хлопковой пряжи не подвергшейся обработке и пряжи, пропитанной 20%-ной окисью цинка или 30 (.-ной окисьютитана. Когда окружающий воздух сухой, текучести медноаммиачного раствора, полученного как из необработанных, так и пропитанных нитей, увеличиваются в небольшой степени, которая выявляется только по сравнению с необлучен-ными контрольными образцами. Однако присутствие влаги вызывает увеличение текучести нитей, обрабатываемых окисями цинка и титана,соответственно на 28 и 7,8 ре. Текучесть других нитей, необработанных, но облученных, также увеличивается на 29 и 9,6 ре, даже вопреки тому, что они отодвинуты от других на расстояния от 0,3 мм до 8 мм. Таким образом, выявляется, что облучение пропитанных нитей вызывает образование окислителя, достаточно летучего для того, чтобы диффундировать через 0,3 мм воздуха и более и окислять близлежащую нить. Так как существование свободного радикала слишком непродолжительно, чтобы сохраниться при таком перемещении, то самым вероятным агентом является перекись водорода. Воздух, барботируемый [c.183]

    В 1801 г. Томас Юнг (1773—1829), выдающийся английский физик, астроном и врач (разработавший, в частности, теорию цветного зрения), провел опыты, показавшие, что свет ведет себя так, как будто он состоит из очень маленьких волн. Затем, примерно в 1814 г., французский физик Огюстен Жан Френель (1788—1827) показал, что световые волны относятся к классу волн, называемых поперечными волнами. В таких волнах колебания происходят под прямым углом к направлению их распространения. Самый наглядный пример волн такого типа — волны на воде. Отдельные частицы воды перемещаются вверх и вниз, а сама волна движется по поверхности. [c.85]

    Для достижения максимальной скорости реакции сульфохлорирования, а также оптимального соотношения хлора и серы необходима наименьшая интенсивность падающего света. Усиление интенсивности света не имеет влияния на ход реакции. Ниже наименьшей интенсивности света наблюдаются замедление скорости реакции и ухудшение соотношения хлора и серы, а хлорирование в углеродной цепи снова усиливается. При одинаковой интенсивности свет более коротких волн дает более низкое соотношение хлора и серы, чем длинноволновый свет. Это благоприятное влияние на реакцию сульфохлорирования может объясняться непосредственным возбуждением молекулы 502 или промежуточным возникновением радикала К—502, тем более что по исследованиям Корнфельда и Веегмана [8] абсорбция 502 начинается [c.363]

    Проходящий через гальванометр 7 ток отклоняет зеркальце тем сильнее, чем больще сила тока. Отраженный зеркальцем луч света оставляет на фото бумаге тонкую линию, видимую после проявления. Таким образом прибор авто матически записывает вольт-амперную кривую вместе с рядом параллельно рас положенных вертикальных линий, расстояние между которыми равно 1 см, т. е соответствует увеличению напряжения на 0,1 (или на 0,2) в. На рис. 67 изобра жена полученная полярограмма и показан способ измерения высоты полярогра фической волны (отрезок h), по величине которой определяют концентрадию соответствующего иона в растворе. [c.454]


Смотреть страницы где упоминается термин Свет — это волна: [c.207]    [c.34]    [c.28]    [c.30]    [c.24]    [c.65]    [c.474]    [c.144]    [c.202]    [c.37]    [c.38]   
Смотреть главы в:

Фотосинтез С3- и С4- растений Механизмы и регуляция -> Свет — это волна




ПОИСК







© 2025 chem21.info Реклама на сайте