Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лауэ

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]


Рис. 13. Схема метода Лауэ Рис. 13. <a href="/info/19560">Схема метода</a> Лауэ
    Метод Лауэ, или метод неподвижного кристалла. Методом Лауэ называется съемка неподвижного монокристалла в полихроматическом рентгеновском излучении. Дифракционная картина фиксируется на неподвижной, чаще всего плоской фотопленке, перпендикулярной первичному пучку рентгеновских лучей и расположенной за образцом (прямая съемка на просвет) [c.79]

    Де Бройль выдвинул предположение, что это соотношение имеет универсальный характер. Он предложил считать, что с каждой частицей связана волна. Длина волны зависит от массы частицы и скорости ее движения. Если это предположение оправданное, то электроны должны давать при прохождении сквозь кристаллы дифракционную картину, подобную той, которую наблюдал фон Лауэ с рентгеновскими лучами. [c.355]

    Причина столь резкого изменения картины рассеяния после аварии состояла в образовании в результате отжига монокристаллов никеля, которые служили своего рода дифракционными решетками. Если де Бройль прав и электрон обладает волновыми свойствами, то картина рассеяния должна напоминать рентгенограмму Лауэ. Д рассчитывать рентгенограммы к тому времени уже умели, формула Брэгга была известна. Так, для случая, представленного на рис. 5, угол а между плоскостями Брэгга и направлением, максимального рассеяния электронов составляет 65°. Измеренное рентгенографическим методом расстояние а между плоскостями в монокристалле Ni равно 0,091 нм. Уравнение Брэгга, описывающее положение максимумов при дифракции, имеет вид пХ = 2а sin а (п — целое число). Принимая п = 1 и подставляя экспериментальные значения а и а, получаем для Ъ Я = 2 0,091 sin 65° = 0,165 нм Формула де Бройля [c.22]

    В методе Лауэ, работая на белом излучении с постоянным углом падения лучей, получают рентгенограмму от неподвижного монокристалла. Этот метод может быть применен для определения ориентировки монокристалла, симметрии кристалла и т. д. [c.355]

    I. Установление сингонии и класса Лауэ (диффракционного класса) и ориентации кристаллов. [c.376]

    Рентгенография и электронография. Оба эти метода, основанные на применении рентгеновских лучей или потока электронов, подробно рассматриваются в курсе физической химии, и поэтому мы не будем касаться здесь принципов, лежащих в их основе. Отметим лишь, что методом рентгенографии можно получить информацию о внутренней структуре коллоидных частиц.. Вследствие малого размера этих частиц при исследовании коллоидных систем с помощью рентгенографии получать диаграммы Лауэ затруднительно и приходится чаще всего ограничиваться получением и изучением диаграмм Дебая — Шеррера. [c.53]


    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Если объектом исследования служит плохо ограненный кристалл или обломок кристалла, основным исходным методом съемки служит полихроматический метод Лауэ. Из лауэграмм и эпиграмм [c.82]

    Рентгеновские лучи представляют собой электромагнитные колебания, длина волны которых (10 —м) сравнима с линейными размерами атомов. Открытие рентгеновских лучей принадлежит В. Рентгену (1895), а их волновая природа была установлена спустя 17 лет М. Лауэ совместно с В. Фридрихом н П. Книппингом, которые обнаружили дифракцию (рассеяние) рентгеновских лучей на кристаллах. [c.113]

    Метод Лауэ применяют для исследования структуры монокристаллов. Монокристаллический образец помещается на пути рентгеновского луча, обладающего сплошным спектром (рис. 5 6, а). Этот немонохроматический луч, падая на кристалл, взаимодейству- [c.118]

    В 1912 г. М. Лауэ доказал, что рентгеновские лучи представляют собой электромагнитное излучение, длина волны которого примерно в 10000 раз меньше длины волны видимого света этим были созданы основы структурного рентгеновского анализа. [c.494]

    ЛИ Начало дифракционного структурного анализа было полоя е-но знаменитым опытом Лауэ, открывшим дифракцию рентгенов- Ских лучей в кристаллах (1912 г.) [9]. Следующим важным шагом явилось установление волновых свойств частиц вещества де Бройлем, предложившим формулу Я = (1925 г.). Эта формула была [c.15]

    Раскрывая выражения скалярных произведений, получим уравнения Лауэ в обычной скалярной форме  [c.36]

    Многие направления развития экспериментальных методов структурных исследований были намечены уже в первых работах М. Лауэ, В. Л. Брегга, П. Дебая и других исследователей, однако эта область физики твердого тела непрерывно развивается и совершенствуется. [c.111]

    Возможности метода Лауэ не ограничиваются только определением симметрии кристалла и его ориентации. Он может быть использован для определения структуры кристалла, для изучения диффузного рассеяния и для ряда других задач [9]. Интересный пример применения метода Лауэ для установления ориентационных соотношений фаз, возникающих при распаде пересыщенных твердых растворов, приведен в работе [10. Авторы показали, что выявление и анализ элементов симметрии матрицы и фазы на лауэграммах монокристалла распавшегося сплава позволяют установить ориентационные соотношения между их кристаллическими решетками. Большим преимуществом этого метода является его экспрессность и наглядность. [c.153]

    Для расшифровки структуры двумя первыми методами используют условия Лауэ, а при интерпретации дебаеграмм — уравнение Брэгга, по которому определяют параметр n/d, характеризующий данную дифракцию. Набор значений nid и относительные интенсивности дифракционных лучей используют в рентгенофазовом анали- <е как эталон для идентификации исследуемых образцов. [c.203]


    Недостаток метода Лауэ связан с тем, что при использовании полихроматического излучения интенсивность дифракционных лучей зависит не только от структуры кристалла, но и от распределения интенсивности по A в спектре первичного пучка. [c.203]

    Профессору Лауэ в 1912 г. пришла счастливая мысль применить в качестве дифракционной кристаллическую решетку. Атомы в кристалле, как известно, расположены в определенном порядке на расстоянии около ле друг от друга, т. е. на расстоянии того же порядка, что и длины волн рентгеновского излучения. Поэтому кристалл представляет собой как бы очень частую дифракционную решетку, которая способна дать спектр даже такого коротковолнового излучения, как рентгеновское. [c.30]

    Но вот произошло открытие рентгеновских лучей и радиоактивности. В 1895 г. Вильгельм Рентген (1845-1923) проводил опыты с сильно ваку-умированными круксовыми трубками (см. рис. 1-11), что позволяло катодным лучам соударяться с анодом без препятствий, создаваемых молекулами газа. Рентген обнаружил, что при этих условиях анод испускает новое излучение, обладающее большой проникающей способностью. Это излучение, названное им х-лучами (впоследствии его стали также называть рентгеновскими лучами), легко проходит через бумагу, дерево и мышечные ткани, но поглощается более тяжелыми веществами, например костными тканями и металлами. Рентген обнаружил, что х-лучи не отклоняются в электрическом и магнитном полях и, следовательно, не являются пучками заряженных частиц. Другие ученые предположили, что эти лучи могут представлять собой электромагнитное излучение, подобное свету, но с меньшей длиной волны. Немецкий физик Макс фон Лауэ доказал эту гипотезу спустя 18 лет, когда ему удалось наблюдать дифракцию рентгеновских лучей на кристаллах. [c.329]

    ТОЛЬКО в XX столетии, после того как в 1912 г. Лауэ, Фридрихом и Книппингом (Германия) было открыто явление дифракции рентгеновских лучей, на котором основан метод рентгеноструктурного анализа. [c.142]

    Методы и схемы съемки рентгенограмм. Методы съемки с фотографической регистрацией. Существуют три принципиально различных метода рентгенографического анализа с фотографической регистрацией рентгеновского излучения, в двух из которых — методе порошка поликристаллического вещества и методе вращения монокристалла — используется монохроматическое, а в третьем — методе Лауэ — полихроматическое излучение. К разновидности метода вращения относится метод колебания или качания монокристалла. Кроме того, метод вращения и качания можно подразделить на два вида, в одном из которых съемка осуществляется на неподвижную, а в другом — на перемещающуюся пленку (метод развертки слоевых линий или рентгеногониометрический метод). [c.78]

    В лабораторной системе координат (Д-прострапство) положение селективных максимумов дифракционной картины кристалла описывается тремя уравнениями Лауэ или формулой Вульфа — Брэгга. Обе формы записи эквивалентны, но вторая, из-за большей простоты и наглядности, используется чаще. Интерференционное уравнение (В.8а) содержит в себе и уравнения Лауэ и формулу Вульфа — Брэгга. [c.36]

    В методе Лауэ используется неподвижный монокристалл и непрерывный (сплошной) спектр рентгеновского излучения, т. е. варьируется длина волны X. Монокристалл К (см. рис. V.1) работает как спектральный прибор из всего непрерывного спектра рентгеновского излучения Я < Ящах выбираются только те длины волны, для которых при заданной ориентации монокристалла, т. 0. при фиксированных выполняется условие Вульфа — Брегга. [c.113]

    Достоинством этого способа яв.пяется более полная регистрация интерференционной картины. Существуют и другие способы установки пленки для регистрации лауэграмм [6]. Рентгеновские камеры отечественного производства типа РКСО imh РКВ-86 обеспечивают возможность получения рентгенограмм по методу Лауэ для различных способов закладки фотопленки [3]. [c.114]

    Метод Лауэ получил наибольшее распространение для определения ориентации монокристаллов, изучения их симметрии и степени совершенства их кристаллического строения, однако с его помощью успешно решаются и другие задачи структурной кристаллографии. В гл. VIII показано, как с помощью лауэграмм определяется симметрия кристаллов. [c.114]

    Исследование структуры кристаллов. Правильная форма кристаллов обусловлена упорядоченным расположением составляющих их частиц - атомов, ионов или молекул. Как указано выше, это расположение может быть представлено в виде кристаллической решетки - пространственного каркаса, образованного пересекающимися друг с другом плоскостями. В точках пересечения трех плоскостей (узлах решетки) лежат центры частиц, образующих кристалл. Такие представления о строении кристаллических тел высказывались давно многими исследователями, в частности М. В. Ломоносов использовал их для объяснения свойств селитры. Однако экспериментально исследовать внутреннюю структуру кристаллов удалось только в XX столетии, после того как в 1912 г. Лауэ, Фридрих и Книппинг (Германия) открыли явление дифракции рентгеновских лучей, на котором основан метод рентгеноструктурного анализа. [c.151]

    Рентгеноструктурный анализ. Этот метод является наиболее старым из перечисленных. Дифракция рентгеновских лучей была открыта Лауэ с сотр. в 1912 г. Тогда же Лауэ показал, что разность хода лучей с длиной волны к, рассеиваемых в дифракционном направлении, т. е. а(соьф— osx). > де о — периодичность решетки [c.201]

    В методе Лауэ для исследования берут один кристалл и облучают пучком рентгеновских лучей с широким диапа.юном длин волн, в котором всегда б дут волны, длина которых удовлетворяет условию дифракции. На фотографической иластиике, расположенной за кристаллом, возникает черное нягно в том месте, куда падает прямой пучок рентгеновских лучей, н ряд других пятен, указывающих на преимущественное рассеяние нучка рентгеновских лучей в определенных направлениях. Характер дифракционной картины отражает симметрию расположения aioMDs в плоскостях, перпендикулярных направлению луча. Облучая неизвестный кристалл вдоль различных направлений, можно получить представление о симметрии расположения в нем атомов. Обработка полученных данных позволяет расшифровать структуру кристалла. [c.202]

    В соответствии с этим применяются три различных способа рентгеновского структурного анализа. В одном из них — методе Лауэ пучок рентгеновских лучей всевозможных длин волн проходит через диафрагму и падает на поверхность кристалла под некоторым определенным углом (рис. 13). В потоке лучей всегда найдутся такие, длины которых удовлетворяют условию (а), при этом в результате отражения на фотографической пластинке, наряду с центральным пятном от непреломившегося луча, получаются симметрично расположенные вокруг него пятна, каждое из которых соответствует каким-нибудь кий. Лауэграмма (рис. 14) дает возможность определить симметрию кристалла и его ориентировку. Расшифровка лауэграмм — достаточно сложная задача. [c.57]

    Скоро удалось построить приборы (приборы Лауэ, Браггов, Дебая и Шерера и др.), с помощью которых можно получить спектры рентгеновских лучей для почти всех известных элементов. Для этого делают антикатод из того металла, спектр которого желают исследовать, или на антикатод из платины (вольфрама) наносят слой соединения исследуемого элемента. Прямыми измерениями удалось исследовать рентгеновские спектры атомов, начиная от натрия и кончая ураном. [c.30]


Смотреть страницы где упоминается термин Лауэ : [c.156]    [c.292]    [c.110]    [c.118]    [c.120]    [c.36]    [c.102]    [c.114]    [c.235]    [c.250]    [c.202]    [c.202]    [c.203]    [c.134]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.385 , c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция условия Лауэ

Диффракция рентгеновских лучей Метод Лауэ

Лауэ Макс

Лауэ и Брэгга Вульфа

Лауэ классы

Лауэ метод для установления

Лауэ метод для установления Лента

Лауэ метод для установления структуры кристалла

Лауэ методы

Лауэ седиментации

Лауэ уравнение

Лауэ условие

Лауэ условие Л изозим

Лауэ условие коэффициент диффузии

Лауэ условие молекулярный вес

Лауэ условие содержание спиралей

Лауэ условие сольватация

Лауэ условия для двумерной решетки

Лауэ условия и закон Брэгга

Лауэ условия измерение рассеяния

Лауэ условия молекулярного кристалла

Лауэ условия одномерной цепочки

Лауэ условия трехмерной решетки

Метод Лауэ дифракционная картина

Метод Лауэ применение

Метод Лауэ симметрия пятен

Недостатки и достоинства метода Лауэ

Определение ориентировки кристалла по методу Лауэ

Ориентация кристалла методом Лауэ

Полихроматический метод (метод Лауэ)

Рентгенограммы Лауэ для синтетического цельзиана

Симметрия классов Лауэ

Сканирование двумерных радиохроматограмм Лауэ)

Спектрально-угловое распределение в случаях Брэгга и Лауэ

Теория Лауэ III

Уравнение дифракции Лауэ

Уравнения Лауэ и Брэгга — Вульфа

Условие дифракции и обратная решетка. Уравнения Лауэ

двумерной дифракции рентгеновских лучей Лауэ

фиг определения величины кристаллов в сильно дисперсных материалах Лауэ III



© 2025 chem21.info Реклама на сайте