Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность природа

    Адсорбционные явления, начиная с физико-механической адсорбции на поверхности раздела фаз и кончая капиллярной конденсацией, представляют сложную совокупность физических, химических и физико-химических процессов. В настоящее время нет единой теории, объединяющей все частные случаи сорбции на общей основе. Теория сорбции подразделяется на молекулярную, сорбцию Ленгмюра, основанную на валентной природе адсорбционных сил электрическую теорию адсорбции полярных молекул (теорию зеркальных сил, квантовомеханический учет дисперсионной составляющей адсорбционных сил) капиллярную конденсацию полимолекулярную адсорбцию Брунауера — Эммета — Теллера, теорию Юра — Гаркинса [25, 44, 69]. [c.66]


    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446]

    В результате изучения процессов электролиза (в первой половине прошлого века) было выдвинуто предположение об электрической природе валентных сил (Берцелиус) и установлены различия валентности по знаку. Естественно было в соответствии с поведением элементов при электролизе приписать элементам, выделяющимся на аноде (кислород или хлор), отрицательный заряд в соединении и, следовательно, отрицательную валентность, а элементам, выделяющимся на катоде (водород, металлы), наоборот, положительный заряд и положительную валентность. Берцелиус настойчиво пытался распространить эти представления на все соединения. Однако такой подход к органическим соединениям большей частью не оправдывался, и в органической химии вместо этой дуалистической теории валентности была принята унитарная теория валентности, в основе которой лежало представление о постоянных валентностях, свойственных основным элементам органической химии — углероду (4), водороду (1), кислороду (2) и т. д. без различия знака, и только для азота пришлось допустить возможное различие валентности по величине (3 или 5). В частности, в конце 50-х годов XIX столетия в работах Кекуле, Кольбе и Купера было введено представление, что углерод обычно бывает четырехвалентным и что атомы его могут соединяться между собой образуя цепи. В конце 50-х и в начале 60-х годов XIX столетия А. М. Бутлеровым была создана структурная теория, способствовавшая дальнейшему быстрому развитию органической химии. Им было объяснено явление изомерии [c.55]


    Исходя из частот валентных колебаний, можно вычислить силовые постоянные. Последние зависят от природы связанных атомов и от кратности связи (табл. 14). [c.146]

    Число и природа носителей т(жа в полупроводниках в большей степени зависят от их чистоты и характера примесей. Примеси принято делить на донорные и акцепторные, т, е. на отдающие и присоединяющие электроны. Донорные примеси увеличивают число электронов, а акцепторные — число дырок. Этот эффект примесей можно пояснить на примере германия, у которого имеется четыре валентных электрона. Если атом германия в его решетке заменить пятивалентным атомом мышьяка, то один электрон окажется лишним. Для его участия в проводимости необходимо, чтобы энергетический уровень атома примеси был расположен в запрещенной зоне вблизи зоны проводимости (непосредственно у ее нижнего края). Тогда каждый атом примеси будет ионизирован и электроны перейдут в зону проводимости. Число отрицательных носителей тока в полупроводнике с донорной примесью больше, чем число положительных носителей тем ие менее уравнение (5.45) остается справедливым, подобно тому как ионное произведение воды не изменяется при добавлении щелочи. Предположим, что один атом донорной примеси приходится ьа 10 атомов полупроводника. Считая все атомы примеси (иaпp iмep, мышьяка) полностью ионизированными, найдем, что в 1 см германия находится 4,5-10 при- [c.138]

    Попытка объяснения свойств бензола (отсутствие струк турных дизамещенных изомеров Б и В) была предпринята Тиле, выдвинувшим в 1889 г теорию парциальных валентностей Согласно этой теории, в сопряженных органических соединениях в области простых связей существу ет частичная двоесвязанность за счет остаточных парци альных валентностей , природа которых, по теории Тиле, неизвестна [c.380]

    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]

    Особыми химическими свойствами обладают элементы промежуточных групп — железа, палладия и платины, а также лантаниды и актиниды. В атомах элементов этих групп происходит достройка глубоких й- и /-состояний. Электроны, находящиеся в этих состояниях, могут участвовать в образовании химических связей наряду с электронами внешней оболочки. В настоящее время синтезированы соединения, у которых число связей значительно больше, чем их должно быть согласно правилу валентности. Природа этих соединений излучается методами квантовой механики. [c.188]

    Данные о строении атома, полученные современной физикой с помощью эксперимента и квантовой механики, имеют решающее значение для понимания валентности, природы химической связи, объяснения химического сродства. С помощью сведений об электронном строении атома, квантовых чисел найдены такие важнейшие характеристики атома, как ионизационный потенциал, сродство к электрону и электроотрицательность. Знание этих величин позволяет определить химическую природу и реакционную способность атомов элемента, подойти к ответу на коренной вопрос химии, почему атомы сочетаются. На основе знания строения атома получили свое объяснение и дальнейшее глубокое раскрытие многие фундаментальные химические закономерности, в том числе и сам закон Д. И. Менделеева. [c.70]

    Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит, в кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи между всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации — валентные электроны слабо удерживаются в атоме, т. е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет также электрическую проводимость металла. [c.89]

    Можно ожидать, что в любой из квантовомеханических трактовок экспериментальный частотный фактор зависит от природы взаимодействий, определяющих переход через барьер. Так, реакции, включающие взаимодействия относительно высоких колебательных частот, например ножничные или валентные колебания связи Н—Н, могут давать более высокие частотные факторы, чем взаимодействия, которые включают низкие колебательные частоты (например, Й — X, где X — тяжелая группа). Примеры рассмотрены в следующем разделе. [c.226]


    Природа катализаторов, содержащих оксиды металлов переменной валентности [c.6]

    В механизме проводимости полупроводников важную роль играют примеси к основному веществу, даже при очень малом их содержании. Если химическая природа примесей и их размещение в кристалле таковы, что в результате теплового движения от ИХ атомов могут отщепляться некоторые валентные электроны [c.146]

    Существенное влияние на каталитическую активность металлов переменной валентности в процессе окисления каучуков оказывает природа антиоксиданта, содержащегося в каучуке [32, 34]. Это иллюстрируется данными, приведенными в табл. 4. [c.630]

    Допущение о возможности с помощью параметров, постоянных для ионов данного вида, определять такую сложную по природе величину, как теплота образования из простых веществ, является слишком упрощенным, чтобы его можно было применять к любым соединениям. Состояние данного элемента при формально одинаковой валентности может быть существенно различным в разных соединениях, как, например, состояние алюминия во фториде, сульфиде и силикатах. [c.155]

    Так как энергия частиц, применяемых в радиационной химии, во много раз превосходит энергию квантовых уровней валентных электронов веществ — участников химической реакции, то, в отличие от фотохимических процессов, первичный акт взаимодействия излучений большой энергии с веществом не носит избирательного характера. Этот первичный акт взаимодействия, излучений большой энергии с веществом приводит обычно к ионизации вещества и возникновению свободных радикалов. Поглощение ионизирующих излучений зависит от порядкового номера поглощающего элемента. Первичные продукты взаимодействия образуются вдоль путей ионизирующих частиц, причем ионизация возрастает к концу пути частиц и зависит от их природы и массы. В фотохимических реакциях вторичные процессы являются в большинстве случаев чисто химическими (ре- акциями радикалов). В отличие от фотохимических реакций, вещества, возникающие под действием радиации большой энергии, подвержены дальнейшему воздействию излучений. Вторич- [c.258]

    После объяснения на основе квантовой механики природы химической связи в молекуле водорода были предприняты многочисленные попытки, с одной стороны, улучшить метод Гайтлера — Лондона, а с другой,— распространить его на другие, более сложные молекулы, что привело в итоге к созданию метода валентных связей ВС), [c.158]

    Для определения ГАС, содержащих связи Н-гетероатом, в работах [129, 131 и др.] использованы полосы соответствующих валентных колебаний с максимумами близ 3590 (свободные фенолы), между 3490 и 3510 (свободные О—Н группы в карбоновых кислотах) и близ 3460 см (группа в карбазолах). Этот же спектральный диапазон (3200—3600 см- ) изучался при выявлении природы водородной связи в высокомолекулярных компонентах нефтей и битумов [228, 229]. [c.29]

    ПАВ — это вещества с асимметричной структурой, в которых молекулы состоят из одной или нескольких гидрофильных групп и содержат одну или несколько гидрофобных радикалов. Гидрофильная группа — активная полярная составляющая молекулы ПАВ — обладает ненасыщенной вторичной валентностью и на границе раздела нефть — вода погружается в водную фазу. Гидрофобная группа (радикал) — инактнвная неполярная составляющая молекулы ПАВ, не имеет валентности и тяготеет к нефтяной (масляной) фазе. Ее часто называют олеофильной группой. Она представляет собой цепочку углеводородных радикалов. Такая структура молекул веществ, называемая дифильной, обуславливает ее поверхностную (адсорбционную) активность, т. е. способность вещества диффундировать через объем фазы и концентрироваться на поверхностях раздела фаз таким образом, что полярная (гидрофильная) часть молекулы, имеющая родственную природу с полярной фазой (например, водой), растворяется в ней, а неполярная (олеофильная) цепочка ориентируется в сторону менее полярной фазы, например нефти или керосина. ПАВ адсорбируются и на твердой поверхности, изменяя при этом ее молекулярно-поверхностные свойства. В результате адсорбции ПАВ происходит диспергирование гетерогенных систем образование защитной, более гидрофобной (или гидрофильной) по сравнению с первоначальной, пленки стабилизация (дестабилизация) дисперсной среды. [c.66]

    Разность энергии активированного комплекса и средней энергии исходных молекул и есть энергия активации. Ее природа была объяснена Лондоном (1928 г.) на основе метода валентных связей. Энергетический барьер создается в результате взаимного отталкивания химически не соединенных атомов (см. разд. 2.5). Следует подчеркнуть, что переходное состояние благодаря максимальной энергии (см. ниже) является неустойчивым, поэтому оно не может быть отождествлено с химическим соединением в обычном смысле слова (к нему неприменимы в полной мере такие понятия, как валентные углы, межатомные расстояния п т. д.). Состав и строение активированных комплексов известны только для немногих наиболее детально изученных реакций. [c.220]

    Огромное влияние на формирование правильных представлений о природе химической валентности и химическом строении вещества оказали работы Александра Михайловича Бутлерова (1828— 1886). Он является создателем теории химического строения (1861), на основе которой развилась современная органическая химия. Эта теория позволяет установить взаимное влияние атомов в молекуле, в том числе и тех, которые связаны между собой не непосредственно, а через другие атомы. [c.16]

    В наше время, на основе представлений электронной теории валентности, зависимость состояния и свойств данного атома от природы связанных с ним атомов является очевидной. Состояние атома хлора и свойства его неодинаковы в молекулах хлористого водорода или хлористого натрия или хлороформа. [c.70]

    Осушка газа твердыми поглотителями основана на явлении адсорбции — концентрирования одного из компонентов паровой или жидкой фазы на поверхности твердого вещества (адсорбента). Природа сил, удерживающих эти компоненты на поверхности адсорбента, полностью не выяснена. Предложено много теорий, объясняющих это явление. Согласно теории Лэнгмюра, на поверхлости твердых адсорбентов имеются участки со свободными остаточными валентностями. Когда адсорбируемая молекула из газовой фазы попадает на незанятый активный центр поверхности, молекула не отталкивается в газовую фазу, а остается связанной с поверхностью. В начальный момент адсорбции существует весьма большое число активных центров и число молекул, связанных поверхностью, превышает число молекул, отрывающихся от нее. По мере покрытия всей поверхности вероятность попадания молекул газа на незанятый активный центр уменьшается, наступает состояние равновесия, при котором скорость адсорбции и десорбции выравнивается. В соответствии с теорией Лэнгмюра, адсорбированное вещество удерживается на поверхности адсорбента в виде пленки мономолекулярно11 толщины. Допускается вместе с тем, что силовые поля адсорбированных молекул могут претерпеть такие изменения, что они будут спо-собн1.[ притягивать к себе второй такой слой, третий и т. д. С повышением давления и понижением температуры количество адсорбированного вещества увеличивается. [c.158]

    Каталитическая активность металлов переменной валентности в процессах окисления и старения синтетических каучуков зависит от следующих факторов природы металла переменной валентности валентного состояния металла химической структуры каучука содержания металла переменной валентности природы ан-тиокспданта, применяемого для стабилизации каучука наличия в каучуке веществ, способных связывать металлы переменной валентности в соединения (комплексы или хелаты), которые являются неактивными в процессах окисления или других превращениях каучуков. [c.629]

    Квантовая механика позволила понять природу химической связи, зависимость валентности от электронной структуры атомов, насьщаемость и направленность валентностей, природу межмолеку-лярных взаимодействий. Только зная эти факторы, можно объяснить сущность теплообмена при конденсации водяного пара в твердое состояние в присутствии различных иеконденсирующихся газов. [c.129]

    Оба последние выражения описывают главным образом либо начальные стадии образования адгезионных соединений, когда образующаяся со временем плотная сетка межфазных связей нивелирует различия релаксационных свойств полимеров, либо поведение систем, в которых межфазные связи валентной природы или отсутствуют, или их образование заторможено влиянием природы контактируюидих объектов. Справедливость изложенных представлений подтверждается результатами статистического расчета числа молекулярных контактов в системе эластомер-твердый субстрат [613], свидетельствующими о его слабой зависимости от давления. [c.141]

    Льюис и Рендалл открыли эмпирический закон ионной силы средний ионный коэффициент активности у диссоциирующего на ионы вещества является универсальной функцией ионной силы/ раствора, т. е. в растворе с данной ионной силой все диссоциирующие на ионы вещества имеют коэффициенты активности, не зависящие от природы и концентрации данного вещества, но зависящие от числа и валентности его ионов. [c.402]

    Природа металла также оказывает большое влияние на величину расщепления кристаллическим полем. Атомы или ионы металлов с валентными 43- или 5 -орбиталями обнаруживают гораздо большее расщепление, чем в соответствующих комплексах металлов с валентными З -орбиталя-ми. Например, для Со(ЫНз)б , ЯЬ(ЫНз) и 1г(КНз)б параметр А имеет значение 22900, 34100 и 40 ООО см соответственно. По-видимому, валентные 43- и 5(/-орбитали иона металла лучше приспособлены к образованию а-связей с лигандами, чем З -орбитали, но причины этого не вполне ясны. Важным следствием намного больших значений параметра А у комплексов с центральными ионами металлов, имеющих валентные 43- и 53-электроны, является то, что все комплексы металлов пятого и шестого периодов (второго и третьего переходных периодов) имеют низкоспиновые основные состояния это относится даже к таким комплексам, как ЯЬВг , лиганды которого принадлежат к числу наиболее слабых лигандов приведенного выше спектрохимического ряда. [c.237]

    Это положение можно объяснить следующим образом для перемещения одного одновалентного атома требуется один атом электричества (см. гл. 5), в то время как для перемещения одного двухвалентного атома требуются два атома электричества . Однако природу зависимости между валентностью и атомами электричества удалось полностью выяснить лишь спустя еще полстолетия (см. гл. 5). [c.82]

    Взаимным отталкиванием связывающих и несвязывающих электронных пар центрального атома можно объяснить влияние на величину валентных углов природы периферических атомов (или их группировок). Например, в рядах И )Ы (107,3°) и МРз(102°), Н2О (104,5°) и 0р2(103°) валентные углы уменьша-птся. Связывающее электронное облако занимает тем меньший объем (локализовано в большей степени), чем выше электроотрицательность периферического [c.76]

    Рассмотренио соотношений между физическими снойстнами и структурой углсводородои удобно начать с краткого обзора данных о природе связей между атомами [64, 97, 35]. В настоящее время принимается, что валентные электроны могут находиться в различных положениях вокруг атомов, связанных химической связью иными словами, считается, что существует электронное облако , находящееся вокруг атомов и между ними положения, занимаемые валентными электронами в любой фиксированный момент времени, мо1 ут быть определены на основании вероятностных соображений [97]. Из данных инфракрасной спектроскопии, а также из других подобных данных известно, что связи между атомами могут претерпевать деформации изгиба и растяжения [35]. [c.227]

    В последние годы в химической, нефтеперерабатывающей и нефтехимической промынгленности широкое распространение получили высокоэффективные сорбенты — синтетические цеолиты. Дегидратированные цеолиты представляют собой пористые кристаллы. В решетке цеолита, как и в других алюмосиликатах, часть ионов четырехвалентного кремния замещена трехвалентными ионами алюмипия, благодаря чему реснетка цеолита обладает некоторым остаточным отрицательным зарядом. Катионы, компенсирующие отрицательную валентность анионных каркасов, располагаются во внутренних полостях решетки, чем обусловлены ионообменные свойства цеолитов. Эффективные диаметры окон, соединяющие большие полости решетки цеолитов, в значительной степени зависят от природы и размеров катионов, расположенных в непосредственной близости к этим окнам. [c.310]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Валентные углы зависят от природы атомов и характера химической связи. Подобно межъядерным расстояниям валентные углы. определяют в настоящее время с высокой To4Ho TbioJj I Как уже указывалось, четыре валентности атома углерода имеют тетраэдрическое расположение. Такое расположение характерно для многих других молекул и ионов, где центральный атом имеет четыре ближайших соседа (Sn U, 50Г, РОГ и др.)-Однако не всегда координационному числу 4 отвечает тетраэдрическое расположение связей. Например, ион [Pd U] имеет плоскую квадратную конфигурацию. Возможны также различные значения валентных углов при окружении центрального атома 3, 5, [c.58]

    Теория химического строения А. М. Бутлерова. В 1861 г. А. М. Бутлеров выдвинул теорию, сущность которой можно сформулировать следующим образом а) атомы в молекуле соединяются друг с другом в определенном порядке б) соединение атомов происходит в соответствии с их валентностью. Согласно теории А. М. Бутлерова валентность атома определяется числом образуемых им химических связ е й.( Этим определением пользуются и сейчас в) свойства вещества зависят I не только от природы атомов и их члсла, но н от их расположения, т. е, от химического строения молекул ) [c.53]

    Проникновение молекул растворителя в поверхностный слой сопровождается отклонением отдельного звена макроцепи сополимера. Поскольку звенья связаны в макроцепи силами главных валентностей, перемещение звеньев вызывает появление локальных сил, которые передаются вдоль цепи, а через межмолекуляр-ные связи и на соседние макроцепи. Причиной, вызывающей движение материальной сплошной среды, является возникновение поверхностных сил, играющих основную роль в механике сплошной среды. Такие силы действуют на каждом элементе поверхности сплошной среды и носят название локальных напряжений (в физикохимии полимеров — давление набухания). Они имеют ту же физическую природу, что и явление осмоса для сильно разбавленных растворов [4]. Возникает поле механических сил, наводимое в системе диффузионными потоками, проникающими в материал полимера. Под воздействием наведенного поля сил начинают проявляться вторичные процессы, способствующие согласно принципам термодинамики снижению механических напряжений в слое. Такими процессами являются перемещения структурных элемАнтов сополимера и изменение конформаций макроцепей. Материальная сплошная среда приходит в движение. Направленность вторичных процессов обусловливает снижение химического иотенпиала растворителя в слое, поскольку происходит увеличение линейных размеров слоя сополимера. [c.304]

    Координационными или комплексными называют соединения, содержащие центральный атом или ион и группу молекул или ионов, его окружающих и связанных с ним (лигандов). Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона. Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Координационное число центрального атома (иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Высокая устойчивость многих комплексных соединений указываает, что химическая связь в них не отличается по своей природе от химической связи в обычных ионных или ковалентных соединениях. В большинстве координационных соединений центром является ион переходного металла (Т , Со , Сг " и др.), а лигандами — ионы или полярные молекулы (обладающие к тому же неподеленной парой электронов.) Именно поэтому электростатические представления легли в основу теории комплексных соединений, так называемой теории кристаллического поля, учитывающей также квантовомеханические особенности строения электронной оболочки центрального иона (Бете, Ван Флек). [c.120]

    Координационное число. Первоначальное понятие валентности ока - а./ ось недостаточным для установления природы более сложных соединений, чем рассмотренные выше. В связи с этим А. Вер-нор г> 1893 г. ввел в химию понятие координационного числа, кото-]К1е соответствует числу атомов нли групп, пепосредственно связанных с атомом, считаюш нмся в молекуле центральным. Понятие координационного числа оказалось чрезвычайно плодотворным. Значение координационного числа обычно соответствует числу всрнпш в правильных многогранниках (тетраэдр — 4, октаэдр — [c.53]


Смотреть страницы где упоминается термин Валентность природа: [c.112]    [c.233]    [c.142]    [c.117]    [c.99]    [c.58]    [c.111]    [c.109]    [c.17]    [c.25]    [c.52]   
Краткий курс физической химии Изд5 (1978) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность квантово-механич. природа

Валентные связи природа

Валентные силы, электрическая природа

Направленная ковалентная связь. Прочности связей валентные углы. Магнитный критерий типа связи Природа атомных орбит и их способность к образованию связей

Природа валентности 1 Валентность и энергии

Природа валентности с точки зрения теории строения атома

Природа главной и побочной валентностей

Природа катализаторов, содержащих оксиды металлов переменной валентности

Строение атома. Периодический закон Д. И. Менделеева Природа химической связи и валентность элементов Строение молекул Сложность структуры атома



© 2024 chem21.info Реклама на сайте