Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

УКС карбамидны

    Для устранения вредного действия смолистых веществ и других примесей А. М. Кулиев с сотрудниками считают, что сырье, идущее на карбамидную депарафинизацию, целесообразно подвергать кислотно-щелочной очистке [38]. А. В. Дружинина и В. Г. Николаева рекомендуют сырье предварительно подвергать гидроочистке [44, 45]. На заводе в Хейде [36] для удаления веществ, тормозящих комплексообразование, раствор карбамида очищают активированным углем. [c.147]


    Кроме активаторов, при процессе карбамидной депарафинизации применяют еще и растворители-разбавители. Введение разбавителей имеет целью снизить вязкость среды, если она оказывается слишком большой вследствие высокого содержания твердой фазы. В качестве разбавителей применяют бензиновые фракции, бензол и ряд полярных растворителей. При депарафинизации маловязких продуктов, таких, как лигроиновые фракции, керосины, удается иногда обойтись без разбавителей. При депарафинизации же масел применение разбавителей обязате.яьно. [c.143]

    Растворители применяют также и для карбамида, и процессы карбамидной депарафинизации можно проводить не только с твердым карбамидом, но и с его растворами. В качестве растворителя для карбамида обычно применяют воду. Но иногда для карбамида можно использовать и другие растворители, например водные низшие спирты и др. Так, Шампанья с сотрудниками для растворения карбамида предлагают применять смесь, состоящую из 56% метилового спирта, 25% моноэтипенг.пиколя и 19% воды [46]. Карбамид переводят в растворенное состояние для облегчения его транспортировки и упрощения технического и аппаратурного оформления некоторых других операций процесса, в частности, регенерации карбамида и отделения комплекса. Но следует не упускать из виду, что депарафинизация твердым карбамидом имеет преимущества, к которым относится более простая схема процесса и необходимость применения меньших масс реагирующих веществ. [c.145]

    РИС. 1Х-7. Технологическая схема установки карбамидной депарафинизации ГрозНИИ  [c.91]

    Физические 1. Обезвоживание и обессоливание 2. Атмосферная и вакуумная перегонка 3. Сольвентная деасфальтизация 4. Экстракционное облагораживание полярными растворителями 5. Депарафинизация кристалм1зацией адсорбционная карбамидная [c.94]

    Кроме проектных недоработок допускаются отступления и при монтаже оборудования, которые могут и приводят к авариям. Например, при контроле вновь строящейся установки карбамидной депарафинизации дизельного топлива на одном из нефтеперерабатывающих заводов были выявлены следующие отклонения от требований правил и норм, допущенные в ходе строительства  [c.40]

    Вопросу подбора для разных условий карбамидной депарафинизации растворителей-активаторов и установлению величины их оптимальной добавки посвящено большое количество исследований как советских, так и зарубежных авторов [40—46, 37—39, 31, 29]. В перечисленных работах можно найти дальнейшие по- дробности по выбору активаторов. В работе А. М. Кулиева с сотрудниками [38] указывается, в частности, что потребное количество активатора зависит от его природы (табл. 18). Так, при депарафинизации дистиллятов сураханской нефти в растворе углеводородного растворителя оптимальное количество вводимого активатора составляет метилового спирта — 2%, этилового спирта — 4%, изопропилового спирта — 25% и ацетона или метилэтилкетона — 50%. При применении в качестве активатора изопропилового спирта важное значение имеет содержание в нем воды, которое должно составлять 8—9% [38]. Роль воды в этом активаторе заключается, по мнению авторов, в повышении растворимости в нем карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. [c.145]


    Недавно запатентован [157] карбамидный метод разделения первичных, и вторичных галогенидов парафиновых углеводородов, который, однако (насколько можно было судить по результатам, изложенным в примерах, приведенных в патентном описании), вряд ли может быть применен в промышленном масштабе для избирательного выделения замешенных при первичном углероде компонентов из продуктов хлорирования нефтяных фракций. [c.205]

    Наибольшие трудности возникают при забивке реакционных аппаратов, тепло- и массообменной аппаратуры и трубопроводов продуктами полимеризации и осмоления в производствах-мономеров и синтетических каучуков и особенно в производствах дивинила, хлоропрена, хлорвинила и полихлорвиниловой смолы, этилена, полистирола, карбамидных смол, гидролизного этилового спирта. [c.295]

    В отстойнике 19 спиртовой раствор депарафината отстаивают от комплекса, который затем промывают промежуточной фракцией. Промытый комплекс из нижней секции отстойника 19 насосом 6 направляют в подогреватель 21, откуда продукты разложения комплекса — спиртовой раствор парафина и карб-амидный раствор — поступают в отстойник 22. Карбамидный раствор из отстойника 22 перетекает в сборник 23, а спиртовой раствор парафинов поступает на отмывку спирта. [c.89]

    Водородная коррозия. Воздействие водорода на сталь при повышенных температурах и давлении связано в основном с разрушением карбамидной составляющей и сопровождается необратимой потерей начальных свойств ма териала [47]. Такое физико-химическое воздействие водорода на сталь называется водородной коррозией. [c.143]

    Карбамидная пульпа в бензиновом растворе парафина из реактора 12 насосом 5 подается в центрифуги 10 ступени II, откуда карбамид возвращается в реактор 11. [c.91]

    Раствор депарафината в бензине из центрифуг 9 направляется в промежуточный приемник 18, откуда насосом 7 подается в центрифуги 14 ступени III. Здесь дополнительно отделяется карбамидный комплекс от раствора депарафината, направляемого из этой центрифуги в колонну 17. Колонны 17 и 20 являются скрубберами тарельчатого типа. В колонне 17 от бензинового раствора депарафината отмывается водой метанол со следами растворенного в нем карбамида. Раствор парафина в бензине из центрифуг 10 ступени II поступает в промежуточный приемник 16, откуда он насосом 6 подается в центрифугу 15 ступени III. В центрифуге 15 дополнительно отделяется карбамид от бензинового раствора парафина, направляемого далее в колонну 20. В колонне 20 от бензинового раствора парафина водой отмывается метанол со следами карбамида, растворенного в метаноле. [c.91]

    Материальный баланс процесса карбамидной депарафинизации дизельного топлива фракции 200—350° С [c.144]

    Карбамидным методом установлено, что из общего количества парафиновых углеводородов на н-алкаиы во фракции 150—200° приходится — 5,3%, а 200—250° — 0,42%. [c.177]

    Парафины и церезины. Вырабатываются как жидкие (получаемые карбамидной и адсорбционной депарафинизацией нефтяных дистиллятов), так и твердые (получаемые при депарафи — мизации масел). Жидкие парафины являются сырьем для получения белково-витаминных концентратов, синтетических жирных кислот и поверхностно-активных веп еств. [c.96]

    Это промышленный процесс, применяемый при производстве низкозастывающих топлив, маловязких масел и жидких парафинов. Последние используются как сырье при производстве синтетических жирных кислот и спиртов, а-олефинов, моющих средств, поверхностно-активных веществ и др. Карбамидная депарафини — аация отличается от депарафинизации избирательными раствори — елями возможностью проведения процесса при положительных ем пературах. [c.270]

    Разработаны и внедрены различные варианты карбамидной депарафинизации, различающиеся по агрегатному состоянию при — меняемого карбамида, природу растворителя и активатора, оформлению реакторного блока, способу отделения и разложения комплекса, каждый из которых имеет свои преимущества и недостатки. [c.272]

    Процесс производства жидких парафинов состоит из двух стадий 1) извлечение парафинов из дизельного топлива методом карбамидной депарафинизации (табл. 40) 2) очистка парафинов от ароматических соединений. [c.143]

    Одной из особенностей карбамидной депарафинизации является резкое снижение эффективности этого процесса при повышении пределов кипения перерабатываемого сырья. [c.150]

    Во многих промышленных процессах карбамидной депарафинизации для отделения комплекса от депарафинированного раствора применяют вакуумную фильтрацию па барабанных фильтрах. При этом в качестве фильтрата получают раствор депарафинированного продукта. В процессах, в которых применяют растворы [c.147]

    В промышленной практике карбамидной депарафинизации отделение комплекса путем вакуумной фильтрации оказалось связанным с рядом осложнений, вызываемых в ряде случаев плохой фильтруемостью комплексов. Особенно трудно протекает вакуумная фильтрация в процессах с водной фазой. В связи с этим были предложены другие способы осуш ествления этой операции. Так, при депарафинизации дизельного топлива твердым карбамидом для отделения комплекса М. Г. Митрофанов, Н. И. Бондаренко, В. Е. Гаврун и Ф. А. Березка применили саморазгружаюш иеся фильтрующие центрифуги [50, 51]. [c.148]


    Изложенное выше показывает, что операция отделения комплекса остается пока еще слабым местом процесса карбамидной депарафинизации и требует дальнейшего совершенствования. [c.149]

    На стадии карбамидной депарафинизации дизельное топливо обрабатывается раствором карбамида в изопропиловом спирте. При охлаждении растворенный в изопропиловом спирте карбамид выпадает в виде кристаллов и образует комплекс с парафиновыми [c.143]

    Следует отметить практически важное наблюдение, сделанное А. В. Дружининой с соавторами [44], относительно того, что застывающие компоненты, которые не удаляются из масел карбамидом, хорошо поддаются воздействию присадок-депрессаторов. Применяя денрессаторы, в известной мере можно расширить область применения карбамидной депарафинизации, поскольку при этом несколько снижается температура застывания масел повышенной вязкости, если она не может быть доведена до нужного уровня одной только депарафинизацией карбамидом. [c.152]

    Получаемый при карбамидной депарафинизации застывающий компонент обычно содержит значительное количество углеводородов с невысокими и очень низкими температурами застывания. Это обусловливается, с одной стороны, способностью карбамида давать комплексы с рядом углеводородов разветвленных и циклических структур, не обязательно обладающих высокими температурами кристаллизации, и, с другой стороны, трудностями освобождения комплекса от увлекаемых им значительных количеств депарафинированного продукта. Для получения из застывающего компонента технических парафинов должной чистоты и тем более для выделения из них относительно чистых к-алканов требуется значительная дополнительная обработка этих продуктов — обезмасливание, деароматизация, очистка, а иногда даже и повторное комплексообразование, проводимое, в частности, при несколько повышенных температурах и при пониженной кратности обработки карбамидом. [c.152]

    Основн достоинством процессов карбамидной депарафини-зацтГявляется отсутствие необходимости применять охлаждение даже при получении из соответствующего сырья низкозастываюпщх продуктов. Но вместе с этим должна быть отмечена и большая [c.152]

    Областью целесообразного применения депарафинизации кар-/ бамидом может являться переработка моторных, в частности д -Л зёльных и реактивных топлив, а также легких нефтяных масел ) при необходимости иметь низкие температуры застывания де-л рафинированных продуктов (на уровне —40° и ниже). В этих случаях сложность данного процесса компенсируется тем, что нет необходимости применять дорогостояпщй процесс низкотемпературного охлаждения. При получении же масел с температурами застывания —15 Ч--20° и выше процесс карбамидной [c.153]

    Область применения. Предложенные процессы депарафинизации карбамидом предназначаются главным образом для переработки светлых нефтяных продуктов — дизельных топлив, керосинов, бензиновых концов и для получения легких нефтяных масел. Имеются специальные варианты процессов карбамидной депарафинизации для фракционировки парафинов, получения концентратов к-алканов, к-алкенов и других частных целей. [c.208]

    Депарафинизация с использованием карбамида отличается от депарафинизации избирательными растворителями возможностью проведения процесса при положительных температурах. Здесь приводятся два варианта принципиальных схем процесса карбамидной депарафинизации, нашедших применение в отечественной нефтеперерабатывающей промышленности схема процесса, разработанного Институтом нефтехимических процессов Академии наук Азербайджанской ССР (ИНХП) и запроектированного ВНИПИнефти, и схема процесса, разработанного Грозненским нефтяным научно-исследовательским институтом (ГрозНИИ) и запроектированного Грозгипронефтехимом. Схемы различаются агрегатным состоянием карбамида, подаваемого в зону реакции комплексообразования, и, как следствие, аппаратурным оформлением реакторного блока, а также секций разделения твердой и жидкой фаз и регенерации основных реагентов. Кроме того, используются различные активаторы и растворители, хотя в обоих вариантах целевыми являются одни и те же продукты низкозастывающие дизельные топлива или легкие масла и жидкие парафины. [c.88]

    Фракционный состав жидких парафинов, выделенных в процессе карбамидной депарафинизации дизельных топлив, не соответствует требованиям на сырье для процесса производства ВЖС методом прямого окисления в присутствии борной кислоты. Поэтому первой производственной стадией является процесс дистилляции углеводородов. Дистилляция проводится под вакуумом остаточное давление составляет 5—10 мм рт. ст. Исходный парафин разгоняется на три фракции 240—275, 275 —320 и 320— 350° С. Содержание средней 4>ранции 275—320° С в-дежод-ном парафине составляет 80%. Углеводороды, кипящие ниже 275° С и выше 320° С, могут быть использованы для других целей, В частности фракция, выкипающая ниже 275° С, может быть использована для получения алкиларилсульфонатов по хлорному методу, а углеводороды, кипящие выше 320° С, могут быть направлены на окисление до синтетических жирных кислот. [c.161]

    Парафиновые углеводороды Сю— ig получают из дизельных фракций методом карбамидной депарафинизации или адсорбционного извлечения на цеолитах [12]. Сырьем является гидроочищенная дизельная фракция 200—320 °С со следующими показателями качества  [c.10]

    Продукт - жидкие н-парафины, содержащие 10-18 атомов углерода. Их качество зависит от метода получения. Ниже приводится характеристика парафинов, полученных методом карбамидной (I) и адсорбционной (П) депарафинизации  [c.10]

    Мощность установок карбамидной депарафинизации составляет 0,5-1,0 млн. т/год по сырью и 35-70 тыс. т/год по парафинам, установок адсорбционного извлечения парафинов - 0,7. млн. т/год по сырью и 100-120 тыс. т/год по парафинам. [c.11]


Библиография для УКС карбамидны: [c.123]   
Смотреть страницы где упоминается термин УКС карбамидны: [c.289]    [c.117]    [c.269]    [c.270]    [c.274]    [c.278]    [c.93]    [c.150]    [c.152]    [c.88]    [c.89]    [c.90]    [c.90]   
Химические товары Том 3 Издание 3 (1971) -- [ c.300 , c.301 ]




ПОИСК







© 2025 chem21.info Реклама на сайте