Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционное извлечение углеводородов

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]


    Описание процессов адсорбционного извлечения углеводородов [c.53]

    Несмотря на это, внимание исследователей к адсорбционным методам разделения углеводородных газов не ослабевает. Это объясняется исключительно большой избирательностью адсорбентов. Например, поглощающая опособность активированного угля по метану, этану и пропану примерно в 70 раз превышает поглощающую способность масла, причем с понижением парциальных давлений газов это соотношение растет. Извлечение углеводородов и разделение их на компоненты с применением активированного угля в отличие от ректификационных методов не требует низкотемпературного холода и больших энергетических затрат. [c.75]

    АДСОРБЦИОННОЕ ИЗВЛЕЧЕНИЕ УГЛЕВОДОРОДОВ [c.257]

    Адсорбционная емкость силикагеля в динамической системе после 1 года работы на установке адсорбционного извлечения углеводородов [c.45]

    ПРОЦЕССЫ АДСОРБЦИОННОГО ИЗВЛЕЧЕНИЯ УГЛЕВОДОРОДОВ Основные условия высокой полноты извлечения [c.47]

    На установках короткоцикловой адсорбции (КЦА), где в качестве поглотителя применяется силикагель, время проскока пентана составляет 12—20 мин. Метан и этан проскакивают практически мгновенно. Если продолжительность цикла адсорбции превышает 30—40 мин, все углеводороды, кроме наиболее тяжелых, будут вытеснены из слоя. В этом случае происходит лишь осушка газа. Таким образом, показатели адсорбционного процесса определяются продолжительностью цикла адсорбции. Если цикл адсорбции очень короткий, то из газа извлекаются и влага, и углеводороды. Извлечение углеводородов из газа в процессе КЦА снижает затраты на осушку газа или позволяет полностью отказаться от установки осушки. Установки КЦА с большим экономическим эффектом могут быть использованы для очистки газа от углеводородов и воды. Перспективы их применения велики. [c.242]

    Для извлечения углеводородов из природных газов применяется процесс КЦА. Механизм извлечения углеводородов в этом процессе подобен механизму извлечения воды в процессе осушки, однако он более сложен, так как в слое адсорбента имеется несколько адсорбционных зон. Скорость перемещения и длина каждой зоны зависят от размеров других зон, расположенных до и после нее. При рассмотрении процесса КЦА необходимо проводить анализ всех этих зон. Некоторые закономерности, рассмотренные ранее в процессе адсорбционной осушки, можно использовать и для анализа процесса КЦА, однако полное отождествление адсорбции углеводородов и адсорбции воды может привести к крупным ошибкам. [c.257]


    Отклонения от 100% при определении химического состава адсорбционным методом зависят от полноты извлечения углеводородов и лежат в пределах точности методики. [c.89]

    Установки для получения жидких парафинов адсорбционным извлечением. Процесс производства нормальных парафинов из нефтяных фракций с помощью цеолитов включает следующие протекающие последовательно стадии адсорбцию — поглощение алканов нормального строения из сырья и десорбцию — выделение их из полостей цеолита. Между этими стадиями в процесс включается дополнительная операция — продувка, при которой из адсорбента удаляются компоненты сырья, а с внешней поверхности цеолита — неселективно адсорбированные углеводороды. [c.316]

    При температуре выше 300° контактная очистка глинами сопровождается крекингом — разложением церезина и превращением его в парафин, разложением нафтеновых кислот до образования ОО2, дегидрогенизацией смол с последующим их уплотнением в асфальтены, уплотнением ароматических углеводородов в смолы, отрывом и разложением алкановых цепей, дегидрогенизацией цикланов и переходом последних в ароматические углеводороды и т. п. Таким образом, в области температур, лежащих выше 300°, отбеливающие глины не только извлекают смолы путем адсорбции (физический процесс), но также каталитически усиливают их разложение (химические реакции). Адсорбционное извлечение и каталитическое разложение дают в сумме высокий эффект обессмоливания масел. [c.333]

    Путем четкой ректификации выделяются бензол, толуол, ксилолы и другие ароматические углеводороды из широкой ароматической фракции, получаемой от процессов пиролиза, алкилирования, экстракционного и адсорбционного извлечения ароматических углеводородов из нефтяных фракций. [c.224]

    В процессах адсорбционного извлечения из газа тяжелых углеводородов могут использоваться многочисленные твердые вещества, например активированный уголь, силикагель, активированный алюмогель, смеси активированных силикагеля и алюмогеля и материалы тина молекулярных сит. Чаще всего для этой цели нрименяют силикагель и активированный уголь. [c.41]

    На рис. 12 и 13 показана относительная эффективность адсорбции при условиях, существующих в динамической системе, для двух типов адсорбентов, применяемых в процессах извлечения тяжелых углеводородов из природного газа. Следует подчеркнуть, что эти кривые являются не теоретическими или расчетными, а фактическими эксплуатационными показателями адсорбентов, полученными в условиях динамической системы на установке адсорбционного извлечения тяжелых углеводородов. Кривые адсорбции на рис. 12 и 13 характеризуют адсорбцию индивидуальных компонентов для многокомпонентной адсорбционной системы при различных степенях насыщения адсорбента суммой всех адсорбируемых компонентов, выраженных в литрах жидкого продукта на 1 адсорбента. Эти кривые типичны для процесса адсорбции углеводородов из природного газа для обычно применяемых в промышленности размеров и формы слоя адсорбента [c.42]

    Обширные промышленные и лабораторные испытания позволили вы- явить обш ее влияние температуры и давления на эффективность извлечения углеводородов различными адсорбентами, применяемыми в динамических системах. Как правило, высокая температура и низкое давление ухудшают адсорбционные характеристики различных материалов это влияние сказы--вается в большей мере на ад- сорбционной емкости, чем на полноте адсорбционного извлечения. Достаточно высокая полнота извлечения может быть достигнута и при высокой температуре или низком давлении, но только за счет некоторого снижения адсорбционной емкости. Например, при температуре в адсорбере 38° С можно достигнуть такой же полноты извлечения, как при 32° С, но адсорбционная емкость в этом случае будет ниже приблизительно на 25%. Аналогично [c.43]

    При температуре регенерации 315° С адсорбционная емкость силикагеля на промышленных установках извлечения углеводородов после 1 года ра- [c.44]

    Другие второстепенные компоненты, часто присутствующие в потоках природного газа, как азот, пары гликоля и метанола, не оказывают вредного влияния на адсорбционную емкость силикагеля и активированных углей. Исключением является двуокись углерода. При высоком содержании двуокиси углерода полнота извлечения углеводородов на адсорбционных установках снижается не в результате дезактивации адсорбента, а вследствие [c.46]

    Эффективная адсорбция целевых компонентов из поступающего газового потока является, разумеется, важной ступенью адсорбционного процесса. Для успешного осуществления промышленного процесса важно также, чтобы эффективное извлечение углеводородов в адсорбционной секции достигалось при сравнительно высокой стенени насыщения адсорбента, т. е. при высоком содержании адсорбата в единице объема слоя. Стоимость оборудования и эксплуатационные расходы определяются главным образом объемом адсорбента, требуемым для извлечения единицы объема углеводородных жидкостей при заданной полноте извлечения. В условиях промышленной установки крайне желательно поддерживать оптимальные условия адсорбции, при которых можно достигнуть высокой степени насыщения адсорбента. [c.47]


    Адсорбционный процесс был разработан специально для достижения высокой полноты извлечения углеводородов. Он включает ряд отступлений от схем обычных процессов осушки твердыми адсорбентами и схем адсорбционных газобензиновых установок начального периода, работавших на активированном угле, в частности в системе регенерации адсорбента и конденсации целевых продуктов [13]. Обычные системы регенерации с разделенным потоком и незамкнутой схемой, широко применяемые на установках осушки твердыми адсорбентами, не позволяют достигнуть высокой эффективности конденсации и извлечения углеводородов. Преимущества систем регенерации с замкнутой схемой настолько значительны, что полноту извлечения сырого газового бензина удается повысить на 10—100% кроме того, можно достигнуть высокой полноты извлечения бутанов и пропана при помощи адсорбционного процесса, что совершенно неосуществимо при системах регенерации с открытой (незамкнутой) схемой. [c.48]

    При извлечении углеводородов в промышленном периодическом адсорбере во избежание проскока целевого углеводорода процесс адсорбции приходится заканчивать много ранее, чем произойдет отработка адсорбционной емкости слоя адсорбента. С целью увеличения поглотительной способности угля часто идут [c.252]

    Перспективным является разделение пропан-пропиленовой смеси в движущемся слое сферического цеолита. В ряде работ разделению в движущемся слое цеолита NaX подвергались бинарные смеси, в которых содержание непредельного углеводорода изменялось от 19,3 до 80,6% (об.). Во всех случаях степень извлечения пропилена (от его содержания в сырье) достигала 99%, а чистота после десорбции 99,5%. Удельный расход цеолита, в зависимости от исходной концентрации пропилена, колебался от 21 до 45 г на 1 л извлеченного углеводорода. Рекомендуемая скорость газового потока в адсорбционной секции колонны непрерывного действия равна 2,4 см/с. Десорбцию осуществляют при температуре 200—210 °С. В качестве динамического агента может быть использована двуокись углерода. На адсорбционных установках с движущимся слоем цеолита эффективно могут быть решены и другие задачи нефтехимии, например выделение нормальных бутиленов из С4-фракции продукта термокрекинга с использованием цеолита СаА или MgA. [c.349]

    Сырье и продукция. Сырьем являются гидроочищенные дизельные фракции, пределы выкипания которых зависят от требований, предъявляемых к извлекаемым парафинам. При получении жидких парафинов, используемых в производстве синтетического белка, на адсорбционное извлечение направляется гидроочищенная дизельная фракция 200—320 °С со следующими показателями качества плотность Р4° = 0,8250,845 йодное число <1,6 содержание серы <0,05, ароматических углеводородов <35, парафинов 18—21% (масс.). [c.142]

    Технологическая схема. Технология адсорбционного извлечения жидких парафинов включает две основные стадии I) адсорбцию — селективное поглощение цеолитом н-алканов 2) десорбцию — удаление из слоя цеолита поглощенных углеводородов. На промышленных установках чаще всего применяется вытеснительная десорбция через слой цеолита пропускают вещество, которое способно, проникнув в пары цеолита, адсорбироваться в них и вытеснить парафины в качестве вытеснителя используются низкомолекулярные н-ал-каны и алкены, двуокись углерода, аммиак и др. [c.142]

    Многие вещества, входящие в третью группу, удаляются из воды при помощи активированных углей, применение которых основано на том, что растворенные в воде примеси вступают в молекулярное взаимодействие с высокоразвитой поверхностью углей и более или менее прочно на ней закрепляются. На углях хорошо сорбируются гидрофобные соединения, к которым принадлежат растворимые в воде углеводороды нефти, ароматические углеводороды и их производные (хлорфенол), хлор производные углеводородов и другие малорастворимые в воде соединения. Для адсорбционного извлечения из воды низкомолекулярных соединений могут применяться мелкопористые угли (марки КАД и БАУ). Для удаления веществ с более крупными молекулами, например фульвокислот и гуминовых кислот, нужны крупнопористые угли (марки ОУ и А). [c.76]

    Из американских нефтей наиболее детально исследована нефть месторождения Понка, в том числе и ее высококипящие углеводородные дистилляты 145, 52]. Масляную фракцию (Сгв—Сдв), составлявшую 10% от сырой нефти, сначала депарафинизировали с применением этиленхлорида в качестве избирательно действующего растворителя при —18° С, а затем экстрагировали жидкой двуокисью серы при 40° С. Экстракт обрабатывали петролейным эфиром при —55° С для извлечения углеводородов, растворимых в жидкой двуокиси серы. Растворимая в петролейном эфире часть экстракта, а также рафинат подвергались затем адсорбционному разделению на силикагеле и служили объектом детального исследования. Фракционной перегонкой в глубоком вакууме были поручены узкие, кипящие в определенном интервале, однородные фракции, состоящие из углеводородов близкого молекулярного веса и типа структур. Каждой из этих узких фракций было не более 0,0025% от сырой нефти. Результаты исследования масляного дистиллята нефти месторождения Понка приведены в табл. 30. [c.183]

    Адсорбционный метод. Этот метод обычно используется для переработки газов с невысоким содержанием бензиновых углеводородов (менее 50 г/л ) для увеличения степени извлечения углеводородов он может быть использован в сочетании с абсорбционным методом. Однако широкого распространения этот метод не получил. [c.43]

    В настояшее время на адсорбционных установках подготовки газа к дальнему транспорту и подготовке газа к дальнейшей переработке применяются вертикальные адсорберы периодического действия. Поток осушаемого газа движется фронтом перпендикулярно к оси аппарата по направлению оси. Отношение высоты слоя адсорбента к диаметру больше единицы и составляет 1.3 - 1,5. Одним из основных параметров работы схем адсорбционной осушки газа является гидравлическое сопротивление адсорберов. С возрастанием гидравлических сопротивлений снижаются расходы осушаемого газа, сокращается срок безкомпрессориого периода эксплуатации. Вследствие этого существует необходимость увеличения коэффициента сжатия на ДКС. Как показывает опыт работы установок на месторождении Медвежье, потери давления в отдельных адсорберах при высоте слоя 3,5 метра могут достигать 0,7-0.8 МПа. что составляет потерю давления до 0-20% и, соответственно, такое же увеличение коэффициента сжатия ДКС. Рост гидравлического сопротивления происходит из-за разрушения адсорбента по естественным причинам и несоблюдения режимов эксплуатации адсорберов. Анализ работы новых адсорберов фронтального типа производительностью 10 млн.н..м /сут для месторождения Ямала показывает, что для осушки и извлечения углеводородов необходимо и меть аппараты диаметром 3,6 м и высотой слоя 8- [c.32]

    При проектировании адсорбционной части установок непрерывного действия, кроме скорости угля, нужно знать высоту слоя угля, гарантирующую полное извлечение углеводородов. Эта высота должна соответ- [c.247]

    Испытания на опытной установке с движущимся слоем угля показали, что высота адсорбционной части в 1 м гарантирует полное извлечение углеводородов. [c.249]

    На рис. 416 показана схема адсорбционной установки, предназначенной для извлечения углеводородов из газов. В адсорбере I происходит поглощение, а в адсорбере // за это же время —десорбция, сушка и охлаждение. Из адсорбера / газ поступает в распределительную линию. На схеме показан период десорбции в адсорбере II, поэтому задвижки а и б открыты и в адсорбер подается водяной пар. Отогнанные углеводороды вместе с водяными парами поступают в конденсатор 1, где конденсируется ббльшая часть водяных паров образовавшаяся при этом [c.612]

    Обычно в потоках природного газа содержится очень немного примесей, способных отравлять твердые адсорбенты, применяемые при процессах адсорбционного извлечения углеводородов, или оказывать иное отрицательное влияние на их адсорбционные характеристики. Имеются только два исключения пары аммиака и туман тяжелого масла. Под действием паров аммиака увеличиваются размеры пор в силикагеле, а при продолжительном воздействии аммиака разрушается пористая структура адсорбента и он быстро утрачивает адсорбционную емкость. Наиболее вероятным, а возможно, и единственным источником паров аммиака в потоках природного газа является процесс очистки газа аминами для удаления сероводорода. Нормальная работа системы отбензипивания и извлечения тяжелых углеводородов после этаноламиновой очистки легко достигается включением простой водной промывки в скруббере, установленном непосредственно перед адсорберами. [c.46]

    Основным условием для успешной и эффективной работы установки адсорбционного извлечения углеводородов является наличие рациональных систем регенерации и конденсации, обеспечивающих высокую степень извлечения жидких углеводородов из природного газа. Как правило, высокая эффективность адсорбции углеводородных компонентов из поступающего газового потока достигается легче, чем эффективное испарение, отпарка, конденсация и выделение в виде жидких продуктов уже адсорбированных углеводородов. Независимо от эффективности ступени адсорбции при неудовлетворительной работе систем регенерации п конденсации в виде жидкого продукта может получаться только часть фактически адсорбированного материала и общая степень извлечения окажется недостаточно высокой. Нанример, если во время цикла регенерации конденсируется половина адсорбированного продукта, то даже при эффективности ступени адсорбции выше 90% половина или больше материала останется неизвлеченной. При этом рециркуляция несконденсировавшейся части материала на вторичную адсорбцию не дает значительного повышения общей степени извлечения. [c.47]

    Механизм извлечения углеводородов в этом процессе 0С, 0 к-ияется тем, что в слое адсорбента имеется несколько адсо])б-циоииых зон и ири промышленных скоростях потока газа адсорбционная зона каждого компонента движется с большей скоростью, чем скорость вытеснения ранее адсорбированного компонента. Поэтому в нромышлеииых условиях получить хроматографическое разделение компонентов невозможно. [c.166]

    Парафиновые углеводороды Сю— ig получают из дизельных фракций методом карбамидной депарафинизации или адсорбционного извлечения на цеолитах [12]. Сырьем является гидроочищенная дизельная фракция 200—320 °С со следующими показателями качества  [c.10]

    Установка адсорбциоппого извлечения углеводородов лишь в общих чертах сходна с газобензиновыми установками начального периода, работавшими на активированном угле, и обычными осушительными установками с применением твердых осушителей. Сходство заключается в том, что для непрерывной адсорбции углеводородных фракций из газового потока используют два или большее число адсорберов, заполненных твердым зернистым материалом. Газ пропускают попеременно через один из адсорберов в неработающих адсорберах проводят регенерацию адсорбента. Однако устанолки адсорбционного отбензипивания газа были разработаны специально для достижения высокой эффективности адсорбции и высокой полноты извлечения сырого газового бензина и сжиженных нефтяных газов [c.53]

    Жидкие н-парафиновые углеводороды используют как сьгрье для производства биологически разлагаемых поверхностно-активных веществ, пластификаторов, синтетических белков. Дeпapaфинизиpoвaннaя дизельная фракция имеет температуру застывания от —35 до -45 °С и используется как компонент летнего или зимнего дизельного топлива. Технологическая схема адсорбционного извлечения н-парафиновых углеводородов представлена на рис. 1.4. [c.10]

    На протяжении последних 20 лет адсорбционные процессы широко используются для осушки природного газа высокого давления. Из твердых адсорбентов в процессах осушки газа чаще всего применяют активированный силикагель и активированный алюмогель. Возможность промышленного извлечения углеводородов при помощи адсорбционных процессов была доказана несколько лет назад, когда были разработаны компактные осушительные установки с малой продолжительностью рабочего цикла, монтируемые непосредственно на устье скважины [8, 9, 26, 27]. Применение активированного силикагеля в адсорберах небольшой емкости и сокращение продолжительности рабочего цикла позволили достигнуть высокой полноты извлечения углеводородных жидкостей на установках осушки газа. Хотя в отдельных случаях одновременное извлечение углеводородов и влаги на таких осушительных установках и может иметь промышленное значение, полнота извлечения углеводородов па этих установках сравнительно не-, велика. Полнота извлечения фракции изопентан и выше из природногв газа пе превышает примерно 50% извлечение же пропана и бутанов на осушительных установках с малой продолжительностью цикла оказалось вообще невозможным. [c.30]

    Метод адсорбционного отбензинивания газов был первоначально разработан для удовлетворения потребности газовой промышленности в экономичном и эффективном процессе извлечения углеводородов с получением газового бензина и сжиженных нефтяных газов из сравнительно сухих или сравнительно малых потоков природного газа, экономичная переработка которых методами масляной абсорбции или низкотемпературной ректификат ции невозможра. Последую-ш ее развитие привело к разработке варианта многоступенчатого процесса с двумя зонами абсорбции, обеспечивающего извлечение всех компонентов и пригодного для переработки любых природных газов независимо от их состава п количества. [c.62]

    В тех случаях, когда осушке подлежит газ, поступающий по газопроводу, характеризующийся и без того низким влагосодержанпем, расчетная адсорбционная емкость молекулярных сит в 4 раза больше, чем силикагеля и алюмогеля лучших сортов. Поэтому молекулярные сита применяются как на существующих, так и на вновь строящихся осушительных установках. Если газ направляется далее па низкотемпературное извлечение углеводородов Сг и выше, то обычно целесообразно применять осушку твердыми адсорбентами. Проектные и эксплуатационные показатели одной такой осушительной установки, первоначально запроектированной для работы на силикагеле, приведены в табл. 5. Расчетная экономия на стоимости повторного сжатия газа в результате уменьшения потери напора в слое адсорбента достигает 30 ООО долл. в год. [c.79]

    На рис. 362 показана схема адсорбционной установки, предназначенной для извлечения углеводородов из газов. В адсорбере / происходит поглощение, а в адсорбере //за это же время—десорбция, сушка и охлаждение. Из адсорбера / газ, поступает в распределительную линию. На схеме показан цикл десорбции в адсорбере //, поэтому задвижки а и б открыты и в адсорбер поступает водяной пар. Отогнанные углеводороды вместе с водяными парами поступают в конденсатор , где конденсируется большая часть водяных паров образующаяся при этом сода отделяется в сепараторе 2, а пары углеводородов с оставшимся небольшим количеством водяного пара конденсируются в конденсаторе 3. Вода отделяется в сепараторе 4 из сепаратора углеводороды направляются в сборник, а некоЕщенсирующиеся пары—иа компрессию для перевода их в конденсат. [c.531]

    Так как стадию извлечения в короткоцикловом процессе проводят при высоком давлении (4 —7)-10 Па (40—70 кгс/см ), адсорбционная емкость, независимо от типа применяемого адсорбента и крутизны изотерм углеводородов, отрабатывается практически полностью, вследствие чего степень извлечения углеводородов от иентана и выше в адсорбере, заполненном как силикагелем, так и активным углем, близка. Преимущество активного угля проявляется только [c.336]


Смотреть страницы где упоминается термин Адсорбционное извлечение углеводородов: [c.53]    [c.145]    [c.41]    [c.46]    [c.48]   
Смотреть главы в:

Очистка и переработка природных газов -> Адсорбционное извлечение углеводородов




ПОИСК





Смотрите так же термины и статьи:

Описание процессов адсорбционного извлечения углеводородов

Процессы адсорбционного извлечения углеводородов

Углеводороды извлечение



© 2025 chem21.info Реклама на сайте