Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аэрозоли под действием электрического пол

    У частиц аэрозолей нет двойного электрического слоя, но в определенных условиях они приобретают электрический заряд. Заряд частиц аэрозолей может появиться в результате трения при их распылении или вследствие адсорбции на поверхности частиц ионов газов, образующихся под действием космического излучения. В отличие от обычных коллоидных растворов, где заряд частиц обусловлен адсорбцией ионов электролита и определяется равновесием между частицей и окружающей средой, у аэрозолей заряд частицы большей частью случаен. В общем все-таки наблюдается закономерность между дисперсностью и величиной заряда заряд частицы аэрозоля тем больше, чем больше ее размеры. [c.350]


    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]

    Отличительная особенность броуновского движения частиц в газообразной дисперсионной среде определяется, прежде всего, малой вязкостью и плотностью газов. В связи с этим жидкие и твердые частицы аэрозолей имеют болыиие скорости седиментации под влиянием силы тяжести, что затрудняет наблюдение броуновского движения. Одиако действие силы тяжести частиц удобно скомпенсировать с помощью электрического поля. Другая особенность броуновского движения частиц в газах связана с тем, что число молекул в единице объема газа значительно меньше, чем в жидкости, и число столкновений молекул газа с коллоидной частицей также меньи.[е, а это обусловливает существенно большие амплитуды броуновского двпжения. Средний сдвиг частицы, находящейся в воздухе при нормальных условиях, в 8 раз больше, а в водороде в 15 раз больше, чем в воде. При уменьшении давления газа средний сдвиг частицы можно увеличить в сотни раз. Из сказанного следует, что, изменяя давление, можно менять характер броуновского движения, т. е. управлять им. Поэтому аэрозоли являются хорошими объектами для исследования броуновского движения. [c.207]

    Наконец, аэрозоли можно разрушать действием электрического поля высокого напряжения. Этот метод, разработанный Коттрелем, используется в промышленности для очистки газов от пыли, разрушения дыма перед его выбросом в атмосферу и других целей. Поскольку частицы аэрозоля обычно слабо заряжены или практически [c.363]


    Разрушают аэрозоли действием электролитов, с помощью циклонов и различных фильтров (сетчатых, тканевых, волокнистых, ультразвуковых, электрических). [c.65]

    В городах очистку атмосферного воздуха от аэрозолей можно производить их коагуляцией или разрушением действием электрического поля высокого напряжения перед поступлением пыли и дыма в атмосферу.  [c.169]

    В промышленности для разрушения аэрозолей с целью очистки газовых смесей широко используют действие электрического поля (метод Коттреля). В электрофильтре Коттреля при пропускании дыма или тувк1ана через электрическое поле высокого напряжения частицам аэрозоля сообщается заряд. Заряжение частиц, вызванное адсорбцией ионов, возникающих в результате ионизации воздуха при коронном разряде (преимущественно отрицательных ионов), обеспечивает электро( юрез и осаждение частиц на аноде. [c.335]

    В промышленности для разрушения аэрозолей с целью очистки газовых смесей широко используют действие электрического поля (ме- [c.275]

    Особый интерес представляет статическое электричество, так как оно связано со свойствами самих аэрозолей. Выше уже говорилось, что высокие электрические заряды могут образоваться в пыли под действием трения, например, при продувании ее через трубку. Если поверхностная плотность зарядов на частицах пыли превысит 3- 10 к/с.и , то может быть превышено пробойное сопротивление воздуха и произойдет коронный или искровой разряд, который может привести к воспламенению аэрозоля. Условия воспламенения пыли под действием электрического разряда рассмотрены в обстоятельной статье Кокса и Пирса [c.359]

    Одним из важнейших свойств аэрозолей является наличие электрических зарядов на частицах дисперсионной фазы, причем в отличие от гидрозолей в аэрозолях могут одновременно находиться частицы, несущие противоположные по знаку заряды. Разрушение аэрозолей происходит вследствие осаждения частиц под влиянием силы тяжести, центробежной силы или под действием электрического поля нередко оно бывает обусловлено коагуляцией. [c.50]

    Э л е к т р о ф и л ьт р ы. Запыленный газ подвергается действию электрических полей здесь осуществляется электрофорез аэрозоля. [c.96]

    В ряде случаев задача состоит в электризации частиц уже образовавшегося аэрозоля. Например, для очистки промышленных газов от взвешенных частиц используют электрофильтры, в которых частицам сообщаются электрические заряды. Заряженный аэрозоль подвергается воздействию электрического поля, и частицы под действием электрических сил осаждаются на электродах электрофильтра. [c.39]

    Таким образом, действие электрического поля, создаваемого самим аэрозолем, двоякое оно вызывает рассеяние аэрозоля в стороны и вверх и одновременно — принудительное осаждение нижней части облака на подстилающую поверхность земли. Какой из этих процессов преобладает — зависит от конкретных условий его протекания. Очевидно, часть аэрозоля при этом теряется как следует из уравнения (2.33), по мере осаждения и рассеяния облака (убыли п) скорость электростатического рассеяния частиц убывает. [c.99]

    Частицы аэрозолей могут быть заряжены, но заряд обычно невелик и в отличие от гидрозолей вокруг частиц двойного слоя не образуется. Самое возникновение заряда на частицах аэрозолей до известной степени случайное и вызывается различными причинами адсорбцией газовых ионов, в результате ультрафиолетового облучения, трения, под действием электрического разряда и т. д. [c.251]

    Частицы аэрозолей перемещаются под действием не только механических сил, но и других градиентов — электрического потенциала (электрофорез) и температуры. Движение в поле температурного градиента называется термофорезом, а осаждение частиц на твердых поверхностях в результате термофореза — [c.297]

    Приведенные выше формулы применимы лишь к аэрозолям с настолько мелкими частицами, что можно пренебречь их потерями за счет осаждения. При наличии крупных частиц выпадение на землю может сильно уменьшить концентрацию аэрозоля. Частицы разных размеров, выпущенные с некоторой высоты Я над землей при ламинарном ветре осели бы на землю на расстояниях Ни/у по горизонтали, где — скорость оседания (седиментации) частицы. Таким образом, частицы с малой скоростью оседания достигни бы земли очень далеко от источника. В турбулентной атмосфере частицы переносятся к поверхности земли турбулентной диффузией и осаждаются на поверхности за счет седиментации, инерционного осаждения, диффузии и, возможно, также под действием электрического поля Земли. [c.299]

    Вредное действие пыли определяется различными ее свой-сгвами. Чем концентрация пыли больше, тем сильнее действие, которое она оказывает на человека, поэтому для пыли установлены предельно допустимые концентрации. Большое значение имеет дисперсность пыли видимая пыль оседает главным образом в верхних дыхательных путях, в полости рта, в носоглотке и удаляется нрн кашле, чихании, с мокротой микроскопическая и ультрамикроскопическая пыль при вдыхании попадает в альвеолы легких и действует иа легочную ткань, нарушая ее основную фуикцию — усвоение кислорода и выделение диоксида углерода. Большое значение имеет форма частиц пыли пылинки с острыми гранями или игольчатой формы, например асбеста, стекловолокна, вызывают более сильное действие, чем волокнистые мягкие пыли. Электрозаряжепность пыли влияет на устойчивость аэрозоля частицы, несущие электрический заряд, I 2—8 раз больше задерживаются в дыхательном тракте. [c.46]


    На практике частицы дисперсной фазы выделяют из газовой среды путем изменения скорости и направления потока аэрозоля (инерционное осаждение) фильтрацией, действием ультразвука или электрического поля, введением зародышей и коагуляцией. [c.360]

    Правильность своей теории О. Ю. Шмидт остроумно доказывает тем, что планеты имеют почти круговые орбиты. Планеты с такими орбитами, могли образоваться только путем объединения большого числа тел, содержащихся в газово-пылевом- облаке, двигавшихся до того по самостоятельным эллиптическим орбитам вокруг Солнца. О. Ю. Шмидт не рассматривал детально механизм объединения пылевых частиц, но можно думать, что при этом существенную роль играют те же факторы, что при слипании частиц аэрозолей. Безусловно, на процесс образования агрегатов должны влиять поверхностные силы, наличие у частиц электрического заряда и т. д. Картина, конечно, сильно усложняется тем, что газово-пылевое облако находится под интенсивным действием такого мощного фактора, как солнечное излучение во всех его видах. [c.29]

    В атмосфере всегда присутствуют ионы, появление которых вызвано, в частности, действием естественной радиации, Для получения заряженных аэрозолей в промышленном масштабе концентрация атмосферных ионов недостаточна. В этих случаях ионизацию воздуха вызывают с помощью различных методов. Наиболее распространена ионизация с помощью коронного электрического разряда. Она положена в основу электроосадителей — аппаратов, предназначенных для очистки газов от частиц дисперсной фазы. [c.189]

    Чтобы электроосаждение было возможно, необходимо, чтобы заряд частиц превышал некоторое предельное значение и чтобы газообразная среда обладала минимальной проводимостью. Эти условия достигаются лишь в электрическом поле высокого напряжения (до 90 000 в). При таком высоком напряжении катод посылает огромное количество электронов, ионизующих воздух. Частицы аэрозоля получают высокий отрицательный заряд и достаточно быстро притягиваются к положительному электроду. Таков, например, принцип действия наиболее распространенного аппарата для электроосаждения дымов — электрофильтра Коттреля, Конструкция электрофильтров разнообразна. Типичный аппарат состоит из ряда труб, одна из которых изображена схематически на рис. 56. [c.150]

    С целью очистки от иода в [69] успешно использовали цеолиты, которые поглощали соединения иода, образующиеся в присутствии оксидов азота. Используют также водно-воздушный эжектор, с помощью которого улавливают радионуклиды иода и радиоактивные аэрозоли [70]. При этом коэффициент очистки воздуха от 1 достигает 40. Улавливание радиоактивных аэрозолей и радионуклидов иода можно проводить не только с помощью описанных фильтров, но и путем применения менее дорогостоящих аппаратов, таких, как циклонный сепаратор. При использовании двухступенчатого циклонного сепаратора удаляется примерно 98-99 % радиоактивных частиц из выбрасываемого в атмосферу воздуха [2]. Улавливание радиоактивных частиц также осуществляют путем наложения постоянного электрического поля [3]. Для электрозахвата радиоактивных частиц были разработаны специальной конструкции электропылесосы, в которых под действием электрического поля осуществлялась очистка воздуха от радиоактивной пыли, содержащей различные радионуклиды ( " Ас, " Ка, "Р, 8, [c.214]

    Этот показатель учитывают при оценке чувствительности аэрозолей к зажигающему действию электрических разрядов и при разработке связанных с ними мероприятий по искробезопасности. Лредельно допустимая энергия электрического разряда И доп не должна превышать 40% от минимальной энергии зажигания Wmhu-Описание метода определения минимальной энергии зажигания аэрозолей приведено в [62, 112]. [c.130]

    Разработан электростатический анализатор размеров частиц диаметром 1—20 мк, в котором частицы заряжаются в коронном разряде и затем осаждаются под действием электрического поля на стенках трубы По существу он аналогичен приборам для измерения электрического заряда частиц (см. главу 3) и дает довольно полное разделение частиц. Разработан также сходный метод, пригодный для частиц диаметром выше 0,4 мк Остроумный метод, предложенный Фостером 1 , дает возможность определять средний размер частиц униполярно заряженных аэрозолей по весу осадков на отдельных секциях цилиндрического осадительного электрода. [c.255]

    Приведенные выше формулы применимы лишь к аэрозолям е настолько мелкими частицами, что можно пренебречь потерями за счет их осаждения. При наличии крупных частиц выпадение на землю может сильно уменьшить концентрацию аэрозоля. Частицы разных размеров, выпущенные с некоторой высоты к над землей, при ламинарном ветре осели бы на землю на расстояниях Ни1о по горизонтали (где и — скорость ветра, а V — скорость оседания частицы). Таким образом, частицы с малой скоростью оседания достигли бы земли лишь очень далеко от источника. В турбулентной атмосфере частицы переносятся к поверхности земли турбулентной диффузией и осаждаются на поверхности за счет,седиментации, инерционного осаждения, диффузии и, возможно, также под действием электрического поля Земли. Взаимодействие факторов, управляющих осаждением аэрозолей из атмосферы, весьма сложно и еще недостаточно изучено. Все же полезно оценить скорость осаждения хотя бы приблизительно, предполагая, что вертикальное распределение вещества в облаке не изменяется в прО цессе осаждения и что скорость выпадения (количество вещества, выпадающего на единице площади за секунду) в любой точке вдоль пути облака выражается произведением концентрации аэрозоля у самой земли % и скорости оседания частиц V. Используя метод, примененный при оценке осаждения взвешенных в воздухе спор и для расчета радиоактивных выпадений мы можем вычислить количество вещества, выпавшего из облака от непрерывного наземного точечного источника, заменив постоянную производительность источника Q величиной Р (д ). Последняя представляет [c.279]

    Таким образом, для образования униполярно заряженных аэрозолей при технических процессах используют две различные схемы. При первой из них распыление жидкости производится одним из рассмотренных выше механических способов (при истечении жидкости из отверстий под давлением, или в потоке воздуха, или при помощи вращающегося распылителя). После распыления жидкости (или порошка) заряд сообщается частицам посредством прохождения их через направленный поток ионов (в поле коронного разряда). При второй схеме само распыление производится с использованием не механических, а электрических сил (контактная зарядка, при которой жидкость контактирует с острой кромкой распылителя, находящейся под высоким напряжением на острой кромке происходит не только зарядка жидкости, но и дробление ее под действием электрических сил). Возможен и промежуточный способ, при котором электрические заряды наводятся на поверхность жидкой пленки перед ее распылением (индукционный способ) при этом электризация производится во время распыления, как и при контактном способе, но ее влияние на процесс распыления мало, и капли образуются главным образом в результате взаимодействия аэродинамических сил, сил поверхностного натяжения и вязкости, а электрические силы играют при этом второстепенную роль. [c.41]

    Как известно, каждая заряженная частица образует вокруг себя электрическое поле. Это тем более относится к совокупности заряженных частиц — облаку униполярно заряженного аэрозоля. Под действием электрических сил происходит электростатическое рассеяние аэрозоля, подчиняющееся закону [1] [c.98]

    В настоящее время невозможно решить проблемы, связанные с разработкой и применением устройств для очистки газов, не имея основательных представлений, например, об аэродинамике вообще и об аэродинамике запыленных потоков (механике аэрозолей) в частнссти, об основах электронно-ионной технологии (особенно о зарядке частиц и их поведении в потоке под действием электрических полей), о процессах взаимодействия частиц аэрозоля друг с другом и с водяной пленкой о закономерностях процесса адсорбции и абсорбции и тд. В то же время необходимым условием плодотворной деятельности в этой области является владение техническими сведениями о конструкции и действии устройств удаления и транспорта пыли (особенно в сложных системах пневмотранспорта), тягодутьевом оборудовании и, конечно, об особенностях запыленных потоков в конкретных технологических линиях, для которых надо выбирать эффективное надежное пылеулавливающее оборудование. Таким образом, плодотворная деятельность в области охраны окружающей среды требует комплексных знаний, и, следовательно, может быть реализована в рамках специализированных экологический служб и организаций. [c.13]

    Рассмотренная картина значительно усложняется, когда частицы способны избирательно адсорбировать ионы какого-нибудь определенного вида, иными словами, когда проявляется действие адсорбционного потенциала. Кроме того, на межфазной границе обычно существует скачок потенциала. А. Н. Фрумкин показал, что на межфазной границе аэрозолей воды или снега благодаря большому. .дипольному моменту молекул Н2О и их ориентации сушествует положительный электрический потенциал порядка 250 мВ Скачок потенциала на межфазной границе может возникать и вследствие так называемой баллоэлектрнзании — электризации частиц аэрозоля при получении его методом диспергирования. [c.346]

    Аэрозоли, как правило, агрегативно неустойчивые системы, так как взаимодействие между поверхностями твердых или жидких частиц и газообразной средой практически отсутствует. Частицы аэрозолей могут приобретать электрический заряд, адсорбируя ионы газообразной фазы, которые возникают под действием радиации (космические лучи, гамма-лучи, ультрафиолетовые лучи). Однако величина заряда частиц, как правило, недостаточна, чтобы противодействовать их агрегации. Искусственно можно повысить заряд частиц. В отличие от лиозолей частицы в аэрозолях не имеют диффузного слоя. [c.456]

    В газах под действием излучения наряду с процессами первичной ионизации и возбуждением происходит вторичная ионизация, Кроме того, образующиеся ионы и электроны обладают определенной кинетической энергией. Поэтому значение средней энергии, необходимое для образования ионной пары больше, чем значение энергии ионизации, и зависит от природы газа. Для разных газов значения W различны, что дает возможность определять состав двухкомпонентной смеси. Различие в свойствах молекул разных газов еще отчетливее проявляется в различной способности их к присоединению электронов. Способность к присоединению электрона обусловлена тем фактом, что электрическое поле положительно заряженного ядра неполностью экранировано электронными оболочками, в связи с чем возникает возможность присоединения одного электрона. Получающиеся отрицательные ионы движутся в электрическом поле со значительно меньшей скоростью, чем свободные электроны. Вследствие большого сечения столкновения их с положительно заряженными ионами рекомбинация их значительно более вероятна. Аналогичным образом электроны и ионы могут присоединяться также к частицам аэрозоля. Частицы аэрозоля, имеющие большую массу, настолько медленно движутся в электрическом поле, что полностью теряют свой заряд в процессе рекомбинаций, не достигая электродов. При этом происходит уменьшение ионизационного тока в камере в соответствии с долей присоединившихся к аэрозолю ионов. [c.324]

    Во многих случаях устойчивость аэрозолей увеличивается благодаря присутствию стабилизатора. Стабилизация при этом осуществляется путем приобретения электрического заряда или путем образования защитных слоев на поверхности частиц. Электрический заряд частиц возникает либо в результате адсорбции ионов-из газовой среды или за счет ионизации газа (воздуха) под действием ультрафиолетовых, рентгеновских и космических лучей, а также радиоактивных излучений либо, наконец, за счет трения. Знак заряда пылевых частиц зависит и от химического состава пыли и дыма основные вещества (СаО, ZnO, MgO, РегОз) дают отрицательно заряженные пыли, а кислые (SiOj, РгОб, а также уголь) — положительно заряженные. В отличие от гидрозолей частицы аэрозолей не имеют диффузного слоя ионов (слоя противоионов) кроме того, частицы в аэрозолях могут jie TH paMH4№ie по знаку и величине заряды или быть нейтральными. При этом наибольшую устойчивость проявляют аэрозоли с одноименно заряженными частицами. [c.350]

    Частицы аэрозолей перемещаются под действием не только механических сил, но и других градиентов — электрического потенциала (электрофорез) и температуры. Движение в поле температурного градиента пязывается термофорезом, а осаждение частиц на твердых поверхностях в результате термофореза — термопреципитацией. Движение частиц происходит вдоль grad Т, от высоких Т к низким. [c.320]

    У частиц аэрозолей нет двойного электрического слоя, но в определенных условиях они приобретают электрический заряд (электризация частиц). Заряд частиц аэрозолей мджет появиться в результате трения при их распылении или вследствие адсорбции на поверхности частиц газовых ионов, образующихся под действием космических лучей. Экспериментально установлено, что обычно частицы аэрозолей металлов и их оксидов несут отрицательный заряд, частицы неметаллов заряжены положительно. Положительно заряжены частицы аэрозоля крахмала, отрицательно— частицы муки. В отличие от коллоидных систем, в которых заряд частицы определяется избирательной адсорбцией ионов, величину и знак заряда частиц аэрозолей заранее предвидеть нельзя. [c.232]

    Чтобы обеспечить более эффективное осаждение вещества, образующего туман, разработаны специальные ловушки, в которых аэрозоли разрушаются при помощи электрического поля (Томпсон, 1961) или под действием центробежной силы (Верли и Ковач, 1959 и 1960). Выход повышается до 95%, но такие охлаждающие системы из-за их больших размеров пригодны преимущественно для препаративной газовой хроматографии. [c.257]

    Аэрозоли, к числу которых относятся туманы, пыль и дымы, состоят из частиц, которые также могут быть электрически заряжены. Эффективная коагуляция подобных систем основана на принципе электрофореза. Обычно в этих целях аэрозоль сначала пропускают через электрическое поле с отрицательным потенциалом, что позволяет адсорбироваться на его частицах достаточно большим электрическим зарядам. Затем аэрозоль пропускают через поле с положительным электрическим потенциалом. Таков принцип действия осадителя Коттрелла (рис. 29.9), который используется в различных отраслях промышленности для удаления вредных коллоидных частиц (дыма) из задымленных газов, для извлечения ценных продуктов из отходов, выбрасываемых вместе с пылью или дымом, либо, наконец, для очистки от пыли воздуха на промышленных предприятиях и в служебных помещениях. [c.499]


Смотреть страницы где упоминается термин Аэрозоли под действием электрического пол: [c.292]    [c.364]    [c.364]    [c.359]    [c.144]    [c.142]    [c.279]    [c.359]    [c.236]   
Курс коллоидной химии (1976) -- [ c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Аэрозоли электрические

Аэрозоль



© 2025 chem21.info Реклама на сайте