Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация ионов

    Рекомбинация ионов происходит вследствие их взаимодействия с электронами  [c.116]

    В отсутствие кислорода преобладающей реакцией является рекомбинация ионов. В присутствии же кислорода атомы водорода, по-видимому, образуют свободные радикалы гидроперекиси, а остающиеся свободные радикалы гидроксила, очевидно, отрывают водород от ароматического соедипения. [c.468]

    В H l лимитирующей катодный процесс стадией является замедленная рекомбинация ионов водорода, в то время как при введении ингибитора ИКУ-1 происходит инверсия лимитирующих стадий с преобладанием замедленного разряда ионов водорода. На практике это приводит к снижению окклюзии водорода вглубь металла, а следовательно, к подавлению его охрупчивания. [c.287]


    В активированном комплексе связи реагентов с поверхностью слабы, так как в них самих связи либо начинают разрываться, либо, наоборот, образовываться. Таким образом, процесс адсорбции приводит к образованию ионов и к десорбции, т. е. рекомбинации ионов это в конечном итоге сводит гетерогенную реакцию к дву- [c.136]

    Важной характеристикой растворителя, влияющей на механизм реакции, является диэлектрическая проницаемость, от которой в первую очередь зависит состав частиц, на которые распадаются вещества-электролиты в растворе (разд. 34.2.4). Кроме того, диэлектрическая проницаемость растворителя влияет на процесс диссоциации, а также кислотно-основное равновесие. Так, рекомбинация ионов в нейтральные молекулы происходит преимущественно в растворителях с низким значением диэлектрической проницаемости г, а увеличение е способствует их диссоциации. Выбор подходящего растворителя или их смеси позволяет получить любое значение е среды, в которой протекает реакция. Этим широко пользуются при титровании в неводных растворителях (разд. 39.9). [c.457]

    Спектроскопия ЯМР широко и успешно применяется для исследования равновесных химических превращений и обменных процессов, при которых периодически меняется строение, а значит, электронное окружение магнитных ядер и спин-спиновое взаимодействие ядер, т. е. химические сдвиги б и константы /. К таким процессам относятся как внутримолекулярные превращения (заторможенное внутреннее вращение, инверсия пирамидальной системы связей у азота, инверсия циклов, таутомерия и т. д.), так и межмо-лекулярные обменные и другие равновесные химические реакции (протонный обмен в водных растворах карбоновых кислот, аммиака, лигандный обмен, рекомбинация ионов, биохимические взаимодействия фермент — субстрат и т. д.). [c.40]

    Константы скорости различных ионных реакций, как и обычных химических реакций, сильно отличаются друг от друга (табл. 8). Однако в целом ионные реакции относятся к числу быстрых процессов. Реакции рекомбинации ионов водорода с анионами кислотного остатка или с ионами гидроксила характеризуются наиболее высокими скоростями среди процессов, протекающих в жидкой фазе. Исследование быстрых ионных реакций потребовало разработки специальных экспериментальных методов. В частности, большое развитие получили так называемые струевые методы, когда смешиваются движущиеся с боль- [c.80]


    НдО+ +А - 712 НаО + НА продукты электролиза, что позволяет определить скорость рекомбинации ионов водорода и анионов кислот. Электровосстановление комплексных ионов кадмия протекает через стадию их диссоциации [c.82]

    Константы скорости различных ионных реакций, как и обычных химических реакций, сильно отличаются друг от друга (табл. 1У.4). Однако в целом ионные реакции относятся к числу быстрых процессов. Реакции рекомбинации ионов водорода с анионами кислотного остатка или с ионами гидроксила характеризуются наиболее высокими скоростями среди процессов, протекающих в жидкой фазе. Исследование быстрых ионных реакций потребовало разработки специальных экспериментальных методов. В частности, большое развитие получили так называемые струевые методы, когда смешиваются движущиеся с большими скоростями струи растворов, содержащих реагенты, и на некотором расстоянии от точки смешения при помощи специальной аппаратуры регистрируются концентрации реагирующих веществ. Применяют также различные импульсные методы, например флеш-метод, который состоит в освещении раствора в течение микросекунды интенсивной вспышкой света и последующих быстрых фотометрических измерениях. Ряд систем изучен фотохимическим и флуоресцентным методами, а также методами, [c.89]

    Рекомбинация ионов происходит обычно с диффузионной константой скорости. Рекомбинация аниона и протона относится к обменным реакциям  [c.120]

    Встречаются, однако, реакции, протекающие практически без энергии активации. К ним относятся рекомбинация ионов, атомов и свободных радикалов. Такие реакции протекают очень быстро со скоростью, близкой к скорости диффузионных встреч в жидкости, их называют быстрыми или диффузионно-контролируемыми реакциями, скорость которых зависит уже от физического процесса диффузии частиц-реагентов в растворе. Константу скорости поступательной диффузии выражают через коэффициенты диффузии реагентов Da и Db следующим образом (г в см, D — в см с )  [c.117]

    Образование заметных концентраций ионов в газах осуществляется под действием очень высоких температур, квантов высокой энергии или быстрых частиц. Ионные реакции в газах включают обычно три стадии элементарные процессы образования ионов реакции их с нейтральными атомно-молекулярными частицами рекомбинацию ионов. Первая стадия связана с ионизацией частиц тем или иным способом (сильным электрическим полем, квантами света, при соударениях нейтральных частиц и т. п.). Вторая определяется протеканием ионно-атомных или ионно-молекулярных реакций. Третья характеризует ион-ионные реакции с образованием нейтральных частиц. [c.198]

    При введении в детектор молекул анализируемых веществ, обладающих большим сродством к электрону (веществ, содержащих атомы галогенов, азота, кислорода и др.), медленные электроны захватываются ими с образованием соответствующих отрицательных ионов. При этом подвижность захваченных электронов резко падает и вместе с тем уменьшается плотность заряженных частиц за счет рекомбинации ионов, которая протекает значительно быстрее, чем электрон-ионные рекомбинации. Эти эффекты вызывают уменьшение тока детектора, пропорциональное (в линейной области) количеству анализируемого компонента (рис. П.26, а). [c.50]

    Димерный ион-радикал является одновременно карбанионом и радикалом и может участвовать как в анионной, так и в радикальной полимеризации. В результате рекомбинации ион-радикалов образуются дианионы  [c.94]

    А+Мг- А +М. и диссоциативная рекомбинация ионов с электронами АВ+4-е- А+В + энергия. [c.90]

    Если на электроды камеры подать напряжение, то в результате движения свободных электронов и ионов, создаваемых при ионизации газа, в камере возникает электрический ток. Этот ток между электродами камеры может быть измерен (рис. 28). Сила тока будет зависеть только от сечения ионизации молекул газа, если напряженность электрического поля исключает возможность как рекомбинации ионов с электронами, так и ионизации [c.137]

    Веллер А. с соавторами изучил эффект магнитного поля в образовании триплетно-возбужденных молекул в результате рекомбинации ион- [c.39]

    Весьма полезным для понимания 8 1-замещения является рассмотрение энергетического профиля (рис. 5-4) приведенного выше идеализированного процесса превращения алкилиодида в алкилбромид. Из двух последовательных стадий (ионизации и рекомбинации ионов) ионизация является наиболее трудной. В самом деле, в то время как для разрыва ковалентной связи и образования противоположно заряженных ионов требуется затрата энергии, при сближении противоположно заряженных ионов и образовании новой ковалентной связи энергия должна выделяться (как раз это происходит на второй стадии). Характерной особенностью активированного комплекса, распад которого ведет к образованию ионов, является увеличение длины связи между углеродом и иодом. Рассматриваемый комплекс образуется только из одной частицы (К—I), и поэтому, как отмечалось выше, реакцию в целом называют мономолекулярной. [c.186]


    Ионизационные В. Действие основано на ионизации молекул газа и измерении ионного тока, к-рый является ф-цией давления. В электронных В. ионизация осуществляется потоком электронов, испускаемых накаленным катодом. Такой В. снабжен еще двумя электродами-анодом и коллектором (рис. 5). Анод-сетка, создающая электрич. поле, к-рое ускоряет электроны. Коллектор имеет отрицат. потенциал относительно катода и собирает образующиеся в газе положит, ионы. Ионный ток в цепи коллектора служит мерой давления газа. Диапазон измерений (10" -1 Па) ограничен при высоких давлениях-малым сроком службы и нарушением линейности градуировочной характеристики из-за возрастающей вероятности объемной рекомбинации ионов и увеличения тока вторичных ионов, также участвующих в ионизации при низких давлениях-остаточным фоновым током коллектора, к-рый не зависит от давления. [c.344]

    Здесь не рассматриваются многие системы, для которых существуют лишь кач(-(лионные данные например, реакция Ка -)- О2 [104], приводящая к образованию КаОз. и реакщга присоединения ВГд к аминам [105]. Опущены также работы по рекомбинации ионов в газовых разрядах [106]. [c.274]

    Кон танта скорости рекомбинации ионов Н и ФГ (фенилгликси-нат) в молекуле НФГ при 298,2 К равна /г = 10"с моль л. [c.341]

    Главная дол первичных элементарных актов химического значения в разряде приходится на возбуждение п диссоциацию молекул на нейтральные осколки. Эти элелкнтарные процессы рассмотрены в настоящей главе. Напротив, при действии ионизирующих излучений, т. е. в радиационной химии, процессы яоиизацш электронным ударом, ионно-молекулярные реакции, рекомбинации ионов вносят существенный, а иногда и г.павпый вклад в химический розул))Тат брутто-процесса. Поэтому мы сочли целесообразным отдельно рассмот] 10 1 ь эти типы элементарных процессов. [c.173]

    В этом смысле прогноз скорости химического превращепия оказывается в радиационно-химической кинетике несравпоппо бо.ние простым и определенным, чем при любом другом способе возбуждения химических реакций. Однако предсказание того, какие вещества образуются в результате радиолиза, значительно более трудно. Это связано с том, что наряду с возбуждением и диссоциацией, на нейтральные осколки прп радиационно-химическом воздействии происходят ионизация и диссоциативная ионизация, а при вторичных процессах — еще и ионно-молекулярные реакции и рекомбинация ионов. [c.184]

    Энергия, выделяющаяся при рекомбинации ионов, сравнима с потоп-циалом ионизации, т. е. во многих случаях она в 2 — 3 раза превосходит энергию межатомной свяаи в молекуле. Поэтому такая рекомбинация (или, как часто говорят, нейтрализация) обычно является диссоциативной. Примерами здесь могут служить процессы [186] [c.194]

    В результате диссоциативной рекомбинации ионов рождаются радикалы и конечные продукты радиолиза, папримср СРТ Ч-е = СН - - Н (или СН3 +Н -h Н), Ht -i- e == С Н, + H (или H + H -f 3H3 [546]). [c.197]

    К настоящему времени экспериментально осуществлено радиационное инициирование многих цепных реакций в газовой (а также жидкой и твердой) фазе. Еще Линд и Ливингстон 1384] наблюдали радиационно-химическое инициирование реакции водорода с хлором с О 3-10 . Иссекс [262] из факта торможения скорости реакции электрическим полем заключил, что большая часть атомов водорода и хлора, ведущих затем обычную атомную цепь Н-ЬС , =- НС1+С1, С - - = НС1+Н, рождается в актах диссоциативной рекомбинации ионов. [c.225]

    Релаксационные методы позволяют изучать реакции в растворах, идущие со скоростью, близкой к частоте соударений реагирующих частиц. Пример таких реакций — рекомбинация ионов гидроксония и гидроксила в воде Н20+ + + ОН- —>- 2НгО, с константой скорости 1,4-10 л/моль-с при 25 °С. Столь же высокими скоростями характеризуются и другие реакции, протекающие с участием ионов ИзО- - и ОН-. [c.265]

    Из (9.7) следует, что Гщах зависит от отношения скорости нагревания к начальной концентрации. Экспериментальные данные подтверждают повышение 1 тах С увеличением хю, однако зависимость Гшах от Мо для разных полимеров не была обнаружена. Предположение, что процесс рекомбинации ионов определяется реакцией первого порядка [c.240]

    Найденные таким способом значения энергии активации хорошо согласуются с значениями U акт определбнными из данных других физических методов, в частности дилатометрического и динамического. Например, для полиэтилена в интервале температур 220—240 К получено [/акт=Ю5 кДж/моль, что совпадает с энергией активации рекомбинации радикалов. В этом случае явление РТЛ связано с диффузией и рекомбинацией ионов, находящихся на различных функциональных группах макромолекул. При более низких температурах возможно движение лишь небольших участков макромолекул, поэтому явление РТЛ обусловливается ориентационным разрущением межмолекулярных ловушек диффузией низкомолекулярных примесей, вступающих в реакцию с ионами и радикалами, а также диффузией подвижных метильных радикалов. Например, если электрон захвачен макро-радикалом i , то рекомбинация двух радикалов может сопровождаться освобождением заряда согласно схеме + [c.241]

    Константа скорости рекомбинации ионов Н+ и ФР- (фенил-глиоксинат) в молекуле НФГ при 298,2 К равна fe=10" сек Х Хкмоль- -м (сек- моль- - - л). [c.333]

    При установке источника в дно ионизационной камеры (тип А) могут применяться серийные, изготавливаемые для других целей дисковые источники, обладающие высокой механической прочностью. Излучение в этом случае используется относительно плохо. В варианте В источник является внешним цилиндрическим электродом ионизационной камеры. Эта форма удобна в том случае, когда радиоактивное вещество находится в виде металлической фольги (стронцпй-90, радий-В, тритий). Она применяется в большинстве серийно изготовляемых радиоизотопных детекторов. Установка источника в качестве внутреннего электрода (тип С) обеспечивает оптимальное использование излучения, особенно в случае применения газообразного радиоактивного вещества (криптон-85). В этой конструкции величина и форма ионизационной камеры могут быть легко изменены при сохранении формы источника. Для того чтобы избежать рекомбинации ионов с электронами или захвата электронов, следует обеспечить возможно большую однородность и высокую напряженность поля между электродами. [c.141]

    ГЕТЕРОЛИТИЧЕСКИЕ РЕАКЦИИ, происходят в результате разрыва одних и образования др. хим. связей б ез разделения электронных пар, образующих эти свя.зи. При Г. р. оба электрона хим. свя.зи переходят на орбиталь одного из атомов продукта р-ции с образованием аннона. Новая связь образуется путем обобществления неподеленпой пары электронов одного из реагирующих анионов. Типичные Г. р. распад молекулы на ионы или иона на молекулу и др. ион нуклеоф. или электроф. замещение (присоединение) рекомбинация ионов. Протеканию Г. р. способствует полярная среда, облегчающая образование полярного активиров. комплекса. ГЕТЕРОПОЛИСОЕДИНЕНИЯ, комплексные соединения, внутр. сфера к-рых состоит из связанных между собой мос-тиковыми связями М—О—М остатков неорг. к-т, напр. H8[Si(W207)e]. Комплексообразовагелями служат У(П1), Мп(УП), S(V ), Te(Vl), P(V), As(V), Si(IV). e(IV), В(Ш), [c.129]

    Hi СН + СНз (сродство протона к молекуле метана больше, чем к радикалу СНз). В полях ионизирующих излучений хим. превращ. с участием ионов состоят в след, последовательности элементарных р-ций ионизация пер-BHHHidl ион + молекула -) вторичный ион -Ь нейтр. частица вторичный ион -Ь молекула третичный ион -Ь + нейтр. частица и т. д., до рекомбинации заряж. частиц — иона с электроном или с ионом противоположного знака. В последнем случае обычно образуются 2—3 нейтр. частицы (т. н. диссоциативная рекомбинация ионов). Вторичные, третичные и др. утяжеленные> ионы могут возникать и в результате тримолекулярных реакций. Так, при ионизации водорода быстрыми электронами при атмосферном давл. и комнатной т-ре в газе в осн. присутствуют ионы [c.225]

    В работе [ ] установлено хорошее соответствие между условием (34) и определенными экспериментально точками замораживания для реакции рекомбинации МОз (2Н02 N264). В то же время приближение внезапного замораживания не является удовлетворительным в случае процессов рекомбинации ионов [12]. [c.109]

    Типичные Г. р.-распад молекул на ионы, рекомбинация ионов, мн. процессы замещения, злиминярованяя и присое-дииення, в т.ч. такие промышленно важные, как нитрование и сульфирование ароматич. соединений, присоединение галогенов к олефинам В полярных р-рителях. [c.542]


Смотреть страницы где упоминается термин Рекомбинация ионов: [c.100]    [c.140]    [c.194]    [c.195]    [c.195]    [c.268]    [c.249]    [c.245]    [c.98]    [c.176]    [c.282]    [c.743]    [c.563]    [c.559]   
Смотреть главы в:

Химическая кинетика -> Рекомбинация ионов

Механизм и кинетика радиационно-химических реакций Издание 2 -> Рекомбинация ионов

Механизм радиационно-химических реакций -> Рекомбинация ионов


Быстрые реакции в растворах (1966) -- [ c.263 ]

Электрические явления в газах и вакууме (1950) -- [ c.18 , c.23 , c.251 , c.472 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.319 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак, комплексы с ионом никеля рекомбинация ионов

Водород ионы, рекомбинация

Гидроксил-ионы рекомбинация

Диссоциативная рекомбинация ионов

Диссоциативная рекомбинация молекулярных ионов с электронами и ассоциативная ионизация

Диссоциативная рекомбинация электронов и молекулярных ионов Елецкий, Б. М. Смирнов

Диссоциация кислот рекомбинация ионов

Диссоциация на ионы и рекомбинация ионов

Диссоциация слабых кислот и рекомбинация ионов

Диффузия ионов при рекомбинации

Иод, образование иона трииодида рекомбинация атомов

Ионные реакции рекомбинация

Ионы рекомбинация

Ионы рекомбинация

Карбоновые кислоты диссоциация и рекомбинация ионов

Кислоты, скорость рекомбинации ионов

Константа диссоциации иона рекомбинации

Коэффициент активности рекомбинации ионов

Коэффициент рекомбинации ионов с ионами

Коэффициент рекомбинации ионов с электронами

Люминесценция при рекомбинации ионов в гетерогенных полимерных системах. Г. Бем, К. Лукас

Образование и разрушение отрицательных ионов Рекомбинация заряженных частиц в разряде

Образование и разрушение отрицательных ионов. Рекомбинация заряженных частиц

Пировиноградная кислота рекомбинация ионов

Рекомбинация

Рекомбинация ионов в газах

Рекомбинация ионов возбуждённый и нейтральный атомы

Рекомбинация ионов с ионами

Рекомбинация ионов с ионами

Рекомбинация ионов с электронами

Рекомбинация ионов, скорость

Рекомбинация ионом

Рекомбинация коэффициент для ионов

Рекомбинация молекулярных ионов с электронами

Рекомбинация положительного иона и электрон

Рекомбинация с отрицательными ионами

Рекомбинация электрона и иона металла

Серная кислота, рекомбинация ионов

Сернистая кислота, рекомбинация ионов

Трехчастичная ион-ионная рекомбинация

Фенолы замещенные рекомбинация ионов

Электрон-ионная и ион-ионная рекомбинации



© 2025 chem21.info Реклама на сайте