Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Седиментационный анализ определение величины частиц

    В седиментационном анализе можно проводить два типа экспериментов. При анализе методом скоростной седиментации проводят определения скорости оседания и диффузии частиц при бioльшиx скоростях вращения ротора, тогда как при анализе методом седиментационного равновесия выжидают установления равновесия между процессами седиментации и диффузии в процессе центрифугирования при меньших скоростях вращения ротора. Теоретически неоднородность распределения по молекулярным весам в образце можно охарактеризовать с помощью обоих указанных методов, получая методом скоростной седиментации распределение по коэффициентам седиментации, а методом седиментационного равновесия — распределение по молекулярным весам. Распределение по молекулярным весам легче интерпретировать хими-ку-полимерщику, не имеющему специальной подготовки. Было показано, что детализированный характер распределения по коэффициентам седиментации можно получить методом скоростной седиментации в отсутствие дополнительных предположений о форме кривой распределения. Такие дополнительные предположения, как правило, необходимы при анализе методом седиментационного равновесия. Скоростное ультрацентрифугирование приобрело, следовательно, наиболее широкое распространение при исследовании неоднородности распределения но молекулярным весам полученные этим методом данные обычно комбинируют с результатами других измерений, преобразуя кривую распределения по коэффициентам седиментации в кривую распределения по мол екулярным весам, в ряде случаев более подходящую для целей исследования. Метод седиментационного равновесия применяется в основном в качестве способа определения абсолютных величин средних молекулярных весов, но применение этого метода для растворов в смешанных растворителях ультрацентрифугирование в градиенте плотности), как недавно было показано, позволяет оценить распределение полимера по плотности. [c.216]


    Физические методы исследования морфологии поверхности и пористости электродов являются наиболее старыми и прямыми. Эти методы обычно позволяют быстро получить воспроизводимые результаты, но они не обладают точностью адсорбционных и химических методов. Многие физические методы определения поверхности (или ее шероховатости), такие, как седиментационный анализ, требуют некоторых предположений относительно размеров частиц. Например, приходится использовать величину среднего диаметра частиц. Поскольку электроды редко состоят из частиц одинаковых размеров, эти методы не позволяют определить поверхность с большой точностью и поэтому ниже они либо не рассматриваются вообще, либо описываются очень кратко. [c.366]

    Определение размера осаждающихся частиц, их формы, величины поверхности эти величины определяют различными методами при помощи седиментационного анализа, адсорбции, микроскопии . [c.74]

    Методика седиментационного анализа на весах Фигуровского и торзионных следующая. Исследуемую пробу нефтяной эмульсии обратного типа перед анализом разбавляют керосином, чтобы концентрация эмульсии не превышала 2,5%, и после перемешивания напивают в цилиндр диаметром 40—45 мм и высотой 200 мм для седиментации. В эмульсию погружают стеклянную чашечку весов диаметром 20—25 мм, подвешенную на тонкой стеклянной нити к кварцевому коромыслу длиной 250 мм. Высота осаждения 90—110 мм (от мениска эмульсии до дна чашечки). За опусканием конца кварцевого коромысла наблюдают при помощи отсчетного микроскопа. Через определенные промежутки времени измеряют величину прогиба кварцевого коромысла, которая зависит от количества осевших на чашечку диспергированных частиц воды. Первое измерение положения кварцевого коромысла производят после погружения чашечки и прекращения колебания, вызванного погружением, а последующие измерения — через определенные промежутки времени, за которые конец коромысла переместился на одно или несколько делений отсчетной шкалы микроскопа. [c.25]

    Корректное выполнение седиментационного анализа суспензий ограничено рядом условий одно из важнейших — правильный выбор концентрации дисперсной фазы. Во-первых, она не должна быть слишком большой, иначе частицы, оседающие с различной скоростью, будут сталкиваться, нарушая закон Стокса во-вторых, она не должна быть и слишком малой, поскольку в этом случае весовые определения становятся неточными обычно рекомендуют 0,5—1%-ное содержание дисперсной фазы. Следует учитывать, что в этом анализе величины г — эквивалентные радиусы, т. е. радиусы сферических частиц равной плотности, которые оседали бы с той же скоростью в данной среде. В величину г включается также толщина сольватной оболочки частицы. [c.48]


    В более широком смысле седиментационным анализом называют метод определения в дисперсных системах величины и относительного содержания частиц различных размеров по скорости седиментации (оседания или всплывании). [c.20]

    По значению второй производной относительной массы осадка Р Ртзх от времени для любого момента времени 01< азывается возможным определение величины /(г). Седиментационный анализ применяется лишь для систем с раз.мерами частиц 1 — 100 мкм. При меньших размерах начинают сказываться закономерности броуновского движения. [c.103]

    Для определения действительных размеров частиц минеральных ингредиентов и относительного содержания частиц разных раз.меров применяют методы, основанные на измерении скорости оседания частиц в воде, т. е. методы седиментацион-н о г о анализа. При оседании на частицы твердого вещества, кроме силы тяжести, действует сила трения /, направленная противоположно силе тяжести. Так как величина силы трения возрастает прямо пропорционально скорости оседания, согласно закону Стокса, то очень скоро устанавливается равновесие этих сил, после чего оседание происходит с постоянной скоростью. На этом основании выводится простая зависимость между радиусом частиц и скоростью оседания  [c.126]

    Используя данные, полученные с помощью трех различных методов, можно оценить вес вирусной частицы. Из величины радиуса инерции, определенной по светорассеянию, и данных электронной микроскопии следует, что частица вируса ВТМ представляет собой стержень длиной 3000 А. Рентгеноструктурный анализ показывает, что на каждые 69 А длины приходится 49 белковых субъединиц. Таким образом, всего в вирусе 49-3000/69 = 2130 белковых субъединиц. Молекулярный вес этих частиц, определенный по данным об их аминокислотном составе, составляет 17 420. Отсюда для молекулярного веса белка вируса получается величина 2130 17 420 = 37,2 10 . Поскольку вирус на 5% состоит из РНК, вес всей частицы равен 37,2 10 /0,95 = = 39- 10 . Этот результат находится в хорошем согласии со значениями молекулярного веса, полученными путем измерения светорассеяния, седиментации и диффузии, а также с помощью метода седиментационного равновесия. [c.362]

    Для того чтобы охарактеризовать крупность частиц в коллективе, можно в принципе использовать две возможности, а-именно определить зерновой состав с помощью ситового анализа и измерить удельную поверхность подходящим стандартным методом. Даже если установление крупности коллектива частиц методом ситового анализа, дополненного седиментационным, кажется сравнительно легким делом, все же для обычного определения доступна лишь более крупная часть зернового состава. Поэтому для характеристики крупности можно считать до неко торой степени оправданной все чаще применяемую практику выбора отверстия сита, через которое проходит 80% материала (Й8о). С другой стороны, определением удельной поверхности обычными методами можно получить величины, характеризующие и более тонкие фракции зернового состава. Так как эти более тонкие фракции оказывают самое большое влияние на величину удельной поверхности, то последняя может рассматриваться как характеристика более тонкой части зернового состава. [c.209]

    Важным условием применимости седиментационного анализа является полная смачиваемость частиц жидкостью в которой они оседают. В этом случае на поверхности твердых частиц образуется слой из молекул жидкости, перемещающийся вместе с частицей. При движении частиц происходит скольжение между двумя слоями жидкости (а ве между твердой поверхностью и жидкостью) и в уравнении Стокса величина т] действительно представляет собой коэффициент вязкости жидкости. Кроме того, следует иметь в виду, что на весмачивающихся частицах обычно образуются воздушные пузырьки, искажающие результаты определения. Наконец, если частицы плохо смачиваются средой, то происходит агрегация частиц, что также искажает результаты анализа. Если исследуемое вещество не смачивается данной жидкостью, необходимо добавить смачиватель (обычно вводят какое-либо Иоверхностно-активное вещество). [c.229]

    Обычные суспензии и эмульсии содержат частицы, сильно отличающиеся друг от друга по их величине. В задачу седиментационного анализа входит не только установление размеров самых крупных к самых мелких частиц, но и определение полного гранулометрического или фракционного состава дисперсных систе.м, позволяющее установить процентное содержание в них отдельных фракций в заданных интервалах радиусов частиц. (Само собой разумеется, что частицы исследуемой суспензии должны иметь одинаковый химический состав.) Седиментационный анализ в описанном ниже виде неприменим для определе ния величины частиц порощков, если они заметно набухают в жидкости, являющейся дисперсионной средой. У мелких частиц с размерами порядка десятых и сотых долей микрона полной седиментации препятствует диффузия, поэтому действие силы тяжести может привести только к установлению седиментационного равновесия. [c.313]


    Для определения гранулометрического состава порошка применялся седиментационный анализ. При этом порошок железа взмучивали в этиловом спирте (уд. в. 0,83 г см , вязкость 2,95 с/г.), переливали полученную суспензию в цилиндр, опускали туда легкую чашечку из алюминиевой фольги, подвешенную на стеклянной нити к коромыслу чувствительных торзионных весов и через определенные промежутки времени взве-пгивали осевший на чашечку порошок. После этого по методу, предложенному Цюрупой [12] расчетным путем определяли процентное содержание фракций порошка с онредс ленньш средним диаметром частиц. Для построения кривой распределения по оси абсцисс откладывали значения среднего радиуса (г) частиц, но осп ординат — величины процентного содержания фракций, рассчитанные для каждого из заданных средних радиусов. [c.299]


Руководство к практическим занятиям по коллоидной химии Издание 3 (1952) -- [ c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ определение

Седиментационная

Седиментационный анализ



© 2025 chem21.info Реклама на сайте