Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут фотометрическое титрование

    Применяется для определения висмута, алюминия, тория, циркония, олова цинка, меди, никеля и других элементов. Предложен и подробно изучен вна чале в качестве индикатора при комплексонометрическом титровании [12, 13] Свойства реактива, как рН-индикатора и как металлохромного индикатора а также строения соответствующих соединений рассмотрены ранее (см. гл. 4, 10). В фотометрическом анализе наиболее целесообразно применение пирокатехинового фиолетового в интервале pH 5—7, где сам реактив окрашен в желтый цвет, а его комплексы в синий. В более кислой, а также в более щелочной среде реактив образует другие формы, окрашенные в фиолетовый цвет. Поэтому наложение окраски свободного реактива создает значительные [c.284]


    Пирокатехиновый фиолетовый (ПФ) применяется как индикатор при комплексонометрическом титровании меди, кобальта, никеля, висмута, тория и других элементов, а также как реагент для фотометрического определения ряда металлов. Большинство комплексов ПФ окрашено в различные оттенки синего цвета. Однако известны соединения различной окраски с одним и тем же металлом. Например, комплекс тория с ПФ в кислой среде окрашен в красный цвет, а в щелочной — в синий. Причины образования соединений различного цвета не изучены. [c.67]

Рис. 318. Кривая фотометрического титрования соли висмута раствором ЭДТА 4- Н4У —В1 - -4Н+ Рис. 318. <a href="/info/427164">Кривая фотометрического титрования</a> <a href="/info/14589">соли висмута</a> раствором ЭДТА 4- Н4У —В1 - -4Н+
    Описанным методом фотометрического титрования можно определить висмут в сплавах со свинцом, который не мешает определению висмута, если даже находится в высокой концентрации. Только в присутствии 5 г свинца переход окраски менее четкий. Мешает определению присутствие олова. Последнее удаляется при разложении сплава бромистоводородной кислотой. При последующем выпаривании исследуемого раствора с соляной кисло  [c.403]

    Ундервуд разработал также метод фотометрического титрования висмута с тиомочевиной в качестве индикатора. pH раствора при этом титровании такой же, как и в первом методе. Образованию желтого комплексного соединения висмута с тиомочевиной способствует нагревание раствора в течение 10 мин. при 70°. По охлаждении раствора его титруют раствором комплексона и наблюдают равномерное уменьшение светопоглощения при длине волны 400 мц (максимум светопоглощения желтого комплексоната висмута лежит при 340—350 мц соотношение висмута и тиомочевины оказывает на него незначительное влияние). Этот метод менее пригоден, чем предыдущий, так как примесь уже 5 мг меди мешает определению вследствие образования осадка соединения меди с тиомочевиной. Присутствие свинца до 1 г определению не мешает. [c.404]

    Оба метода фотометрического титрования висмута приводятся здесь для полноты сведений, так как в настоящее время висмут определяется очень хорошо визуальным титрованием в присутствии пирокатехинового фиолетового в качестве индикатора. [c.404]


    Описано [18] фотометрическое титрование 4-80 мкг висмута (pH 1,5 объем 30 мл 530 нм) и свинца (pH 5,0 580 нм) в присутствии ксиленолового оранжевого и показана возможность их последовательного определения из одного раствора. На основании большого числа визуальных титрований и сравнения их с ходом фотометрических кривых было найдено предельно уловимое отношение обеих окрашенных [c.182]

    Диэтилдитиофосфат никеля применяется для фотометрического определения следов меди в различных материалах [1, 2, 3], фото.метрического определения палладия [4], висмута [5], отделения кадмия от цинка и других элементов [6], определения свинца в присутствии бария, кальция, цинка и других элементов [7], потенциометрического титрования меди [8], обнаружения. молибдена [9] и др. [c.33]

    Растворы катионов при прохождении через них ультрафиолетового света дают отчетливые полосы поглощения, подобно тому, как это наблюдается в видимой части спектра. Комплексы этих катионов с комплексоном поглощают ультрафиолетовый свет обычно при других длинах волн, чем свободные катионы. Это свойство было использовано — пока в незначительном числе случаев — для фотометрического титрования в ультрафиолетовом свете [35]. Из доступной литературы будут приведены только два примера, именно определение висмута и свинца методами Ундервуда и Уилхайта [36] и определение тория автоматическим титрованием, опубликованное Мальмштадтом и Горбандтом [37]. [c.404]

Рис. 3-35. Фотометрическое титрование смеси висмута и меди 0,1 М раствором ЭДТА [43]. Рис. 3-35. <a href="/info/10492">Фотометрическое титрование</a> смеси висмута и меди 0,1 М раствором ЭДТА [43].
    Для фотометрического титрования множества других металлов используют самые разнообразные индикаторы. Например, торий определяют в присутствии хромазурола S [55(71)], пирокатехинового фиолетового [59(76)], ализаринового красного S [59(95)], арсеназо I [62(19)], нафтолового пурпурового [56(19)] или SNADNS [62(5)] барий [56(10), 56(71)], цинк [56(25), 63(47)] и кадмий [63(47)] определяют с применением эриохрома черного Т стронций определяют в присутствии фталеинкомплексона [60 (Т09)], редкоземельные металлы —в присутствии ализаринового красного 8[59 (95)] и арсеназо I [61 (54) 62 (19)] (только эрбий определяют с ПАР [60 (130)]. Для определения висмута и меди применяют пирокатехиновый фиолетовый [59 (21)], висмута и свинца — ксиленоловый оранжевый [60 (47)], никеля — мурексид [57 (63)] с одновременным маскированием кобальта нитрозо-Р-солью к титрованию никеля сводится определение серебра [57(75)] и палладия [55 (1)] —после обменной реакции любого из этих металлов с циа-нидным комплексом никеля. [c.104]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Оксихинолин количественно осаждает ионы висмута из слабоуксуснокислого раствора в форме соединения В1(СдНбОЫ)з постоянного состава . На его образовании основаны гравнметри ческие, титриметрические, а также фотометрические методы определения висмута. Удобно оттитровывать 8-оксихинолин, после растворения отфильтрованного и промытого осадка 8-оксихинолината висмута, броматометрически с использованием установки для потенциометрического некомпенсационного титрования .  [c.323]


    Большинство обычных фотометрических реагентов на ионы металлов малоэффективно при использовании в качестве металл-индикаторов, поскольку их комплексы с металлами слишком прочны. В качестве немногих исключений можно назвать салициловую кислоту [13], 5-сульфосалициловую кислоту [14], тайрон (пирокатехин-3,5-дисульфокислоту) [15] и роданид-ион [16]. Все эти индикаторы применяли при комплексонометрическом титровании ионов Ее(III) в кислых средах. Во всех случаях индикатор бесцветен, а его комплекс с железом окрашен, поэтому, чтобы сделать переход более четким, можно применять большие концентрации индикатора. Подобным же образом при титровании висмута EDTA показателем достижения конечной точки служит образование его желтого комплекса с тиомочевиной [17]. При комплексонометрическом титровании цинка и алюминия в водноацетоновых и водно-спиртовых растворах используют дити- [c.123]

    Определение свинца и бария ведут после экстракционного отделения ниобия в виде его купфероната комплексонометрическим методом [1]. Свинец определяют прямым титрованием в присутствии бария при pH 5 с индикатором ксилено-Л01ВЫМ оранжевым, барий — обратным титрованием после растворения его сульфата в избытке комплексона П1. Ниобий и висмут из отдельных навесок определяют соответственно дифференциально-фотометрическим [2] и спектральным методами. [c.89]

    Высокая устойчивость комплекса индия с ЭДТА 1п ( К— =24,9) позволяет проводить титрование при pH = 2 и ниже. К сожалению до настоящего времени не известен индикатор для прямого титрования в упомянутых условиях. Однако возможно определение индия в сильнокислом растворе обратным титрованием избытка ЭДТА раствором нитрата висмута с пирокатехиновым фиолетовым. Флашка и Садек [56 (42)] воспользовались этим обстоятельством и, как и следовало ожидать, нашли, что метод вполне удобен. Так, например, можно оцределять индий в присутствии 350-кратного количества цинка. Допускается 50-кратное содержание свинца и 10-кратное содержание Н1, Со и даже Си. Не мешают магний и щелочноземельные металлы. Можно также титровать в присутствии умеренных количеств А1, но медленно и в подогретом до 60° С растворе. Согласно неопубликованным исследованиям Флашки, титрование можно проводить даже при pH несколько ниже 2, если пользоваться фотометрической индикацией точки эквивалентности В этих условиях не мешают даже большие количества обычно мешающих элементов. [c.276]

    Флашка с сотр. [56 (42)] рекомендуют растворы висмута в качестве прекрасного титранта для обратного титрования в сильно-кислых растворах. Между прочим, с помощью такого титранта можно фотометрически определить N1 в присутствии Со по методу замороженных растворов [55 (66)] и Со (после окисления его до Со ) в присутствии N1 и других металлов [61 (51)]. Благодаря высокому эквивалентному весу В1 и исключительно резкой точке эквивалентности титрования с пирокатехиновым фиолетовым Пршибил рекомендует чистый для анализа металлический висмут в качестве основного вещества для установки титра растворов ЭДТА в кислой среде. [c.309]


Смотреть страницы где упоминается термин Висмут фотометрическое титрование: [c.164]    [c.104]    [c.115]    [c.242]    [c.402]    [c.182]    [c.136]    [c.160]    [c.142]    [c.206]    [c.235]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Висмут фотометрическое

Титрование фотометрическое



© 2025 chem21.info Реклама на сайте