Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота испарения Н и S из серной

    Теплоту испарения серного ангидрида из олеума находят по муле  [c.17]

    По аналогичной формуле может быть вычислена теплота испарения серного ангидрида из олеума  [c.28]

    Одновременно с испарением воды при упаривании серной кислоты происходит также испарение серной кислоты, приводящее к потерям ее. Количество испаряемой серной кислоты тем больше, чем выше содержание H-SOj в растворе. В современных концентрационных установках это количество невелико. Поэтому в общем тепловом балансе скрытая теплота испарения серной кислоты обычно не учитывается. [c.287]


    По аналогичному уравнению можно вычислить теплоту испарения серного ангидрида из олеума  [c.27]

    Теплота испарения 100%-й серной кислоты составляет 510,9 кДж/моль, теплота плавления — 110,08 кДж/моль. [c.22]

    Вследствие большой скрытой теплоты испарения диоксида серы он употребляется в холодильных установках ЗОд также используется для получения целлюлозы сульфитным способом, для дезинфекции помещений. Дезинфицирующие свойства ЗОа основаны на способности его убивать растительные и животные микроорганизмы. В связи с этим ЗОз применяется для окуривания пивных и винных бочек, для дезинфекции белья, одежды, погребов, подвалов и других помещений. Однако в основном ЗОа используется для получения серной кислоты (см. Серная кислота ). [c.572]

    В холодильнике за счет испарения некоторого количества воды отводится теплота разбавления серной кислоты, поступающей на гидратацию, а также тепло, выделяющееся при перекристаллизации полугидрата сульфата кальция в гипс. Фильтрование ди-гидратной пульпы производят на ленточном (или карусельном) фильтре при 65—68°. Вследствие выделения при гидратации полугидрата крупных хорошо фильтрующих кристаллов гипса фильтрование пульпы происходит с большой скоростью. Длительность всего цикла—основной фильтрации с одной или двумя противо-точными промывками — составляет 1 мин. При этом образуется лепешка толщиной 45—50 мм. [c.137]

    Процесс выделения изобутилена 45%-ной серной кислотой осуществляется в газовой фазе. Изобутилен получают через стадию образования триметилкарбинола, выделяемого из экстракта под вакуумом с последующей дегидратацией триметилкарбинола на оксиде алюминия. Достоинствами процесса являются высокая избирательность и использование теплоты испарения углеводородов для отвода теплоты реакции. [c.132]

    В экстракционной установке экстракция серы достигается обработкой гранул горячим растворителем. В Великобритании для целей экстракции обычно используют перхлорэтилен (СаС] ), так как этот растворитель легко доступен, имеет высокую растворяющую способность в отношении серы в горячем состоянии (около 80°) (обычно работают при температуре несколько ниже точки кипения, равной 120,7°), не воспламеняется и имеет низкие удельную теплоемкость и скрытую теплоту испарения. Извлечение серы из насыщенного раствора осуществляют прямой дистилляцией или кристаллизацией. Сера, получаемая кристаллизацией, представляет собой практически чистый продукт, который в производстве серной кислоты контактным методом может конкурировать с природной серой. Однако при существующих рыночных ценах производство такой серы неэкономично ввиду высоких капитальных и эксплуатационных затрат на ее производство, и в обычной практике применяется простая дистилляция с получением продукта, содержащего 98— 99% серы с примесями смолы и окислов железа. Можно использовать и другие растворители, в том числе и сероуглерод. Процесс экстракции заключается в последовательной обработке гранул, содержащих 30% серы, порциями растворителя при температуре его [c.443]


    Мольная теплота испарения X серной кислоты составляет 46054 кДж/моль, что представляет несколько большую величину, чем X воды (41868 кДж/моль). Поэтому при перегонке в вакууме, согласно правилам Вревского, азеотропная смесь будет изменять свой состав в направлении еще большего обогащения кислотой. Таким образом, все приведенные данные свидетельствуют о принципиальной возможности полного концентрирования кислоты в отгонной вакуумной колонне при умеренных температурах, исключающих разложение кислоты. Кипятильник в такой колонне может быть выполнен из обычной углеродистой стали, так как находящаяся в кубе и кипятильнике высококонцентрированная кислота не будет вызывать коррозии. Отгонная колонна и особенно ее верхняя часть должны быть надежно защищены от коррозии разбавленной кислотой. Можно рекомендовать примерно следующие параметры работы такой противоточной вакуумной колонны температура конденсации отгоняемых водяных паров 40—45 °С (чтобы обеспечить охлаждение конденсаторов дешевой производственной водой). Эта температура соответствует давлению 9,2-9,9 кПа при таком давлении температура кипения 98 %-ной серной кислоты будет равна 210—215 °С и обогрев кипятильников может быть осуществлен водяным паром (Р= 3,99-4,6 кПа, /= 235-240°С). [c.413]

    Накопление данных по изотермическим теплотам испарения и теплотам образования ряда двойных систем (этиловый спирт—вода метиловый спирт—вода пропиловый спирт—вода азотная кислота—вода серная кислота—вода) позволило Михаилу Степановичу дать общую теорию раз- [c.29]

    Определение скрытой теплоты испарения воды из растворов серной [c.310]

    Рис. п-36. Теплота испарения воды пз растворов серной кпслоты. [c.171]

    Концентрирование серной кислоты. При концентрировании серной кислоты расход тепла складывается из тенла, необходимого для подогрева кислоты от начальной температуры до температуры упаривания теплоты дегидратации кислоты (численно равна дифференциальной теплоте разбавления кислоты, но имеет обратный знак) п теплоты испарения удаляемой воды. [c.172]

    Теплота испарения воды из серной кислоты данной концентрации при определенной температуре вычисляется по уравнению  [c.17]

    Теплота испарения 100%-ной серной кислоты при 326 °С равна 122,12 ккал/кг. Теплота разбавления серной кислоты водой. д) определяется по формуле  [c.412]

    Теплота испарения безводной серной кислоты составляет 512,2 кДж/кг (122,2 ккал/кг). [c.14]

    Глицерин — при комнатной температуре прозрачная бесцветная вязкая жидкость со сладким вкусом. Глицерин в больших количествах получают из природных масел и жиров при производстве мыл 3 последнее время все большее значение приобретает синтез глицерина из пропилена через эпихлоргидрин. Синтетический глицерин получают также гидрогенолизом сахаров. Глицерин имеет удельную теплоемкость 0,5795 кал/г (26°С), теплоту растворения в воде 1381 кал/моль, теплоту испарения 21,06 и 18,17 ккал/моль соответственно при температурах 55 и 195 °С. Глицерин гигроскопичен, при длительном хранении на открытом воздухе может поглощать да 40% (масс.) влаги. Полностью растворим в воде, в метаноле и этаноле слабо растворяется в серном эфире, этил-ацетате и диоКсане нерастворим в углеводородах. Не токсичен. [c.24]

    Теплота испарения серной кислоты 425-122,1 (425 — количество испаряющейся кислоты, кг/ч, в том числе 417 кг/ч уносится в электрофильтр и 8 кг/ч теряется 122,1 —теплота испарения Н2804, ккал/кг) 52 1,1 [c.688]

    Метьюз [1253] очищал продажный толуол с целью определения его теплоты испарения. Для этого он встряхивал толуол последовательно с серной кислотой, раствором едкого натра и ртУтью, после чего сущил над пятиокисью фосфора и подвергал фракционированной перегонке. Аналогичный метод очистки использовали Вильямс и Крчма [1274] при получении толУола для определения его диэлектрической постоянной. (См. также работу Ричардса и Уолласа [1548].) [c.288]

    Метьюз [1253] очищал м- и п-ксилолы для определения теплот испарения, встряхивая их последовательно с серной кислотой, раствором едкого натра и ртутью, высушивал затем над 19 — 12 [c.291]

    Недостатками этилацетата по сравнению с серным эфиром является способность омыляться, более высокая температура кипения (77,15° вместо 34,5°), большая теплота испарения (87,6 ккал/кг вместо 84,5 ккал1кг), повышенный удельный вес (при температуре 20° — 0,9 вместо 0,714). Последнее приводит к более медленному отделению экстракта от увлеченных капелек кислой воды, в связи с чем скорость движения жидкостей в экстракторе приходится уменьшать, а габарит его увеличивать. [c.81]

    Основное направление научных работ — изучение состава органических соединений. Под влиянием Либиха занимался (с 1835) исследованием органических соединений. Впервые получил (1835) ви-нилхлорид присоединением хлористого водорода к ацетилену, синтезировал (1838) поливинилиден-хлорид. Открыл (1838) явление фотохимической полимеризации. Определил (1838) элементный состав хинина и цинхонина. Исследовал (1839) тиоэфиры и получил хлорированные метаны от моно-до тетрахлорметана. Изучал (1836—1837) действие серного ангидрида на органические вещества, Разработал (1840) способ получения меркаптанов действием гидросульфита калия на алкилгалогениды в спиртовом растворе. Провел точное определение теплоемкостей, теплового расширения и теплот испарения жидкостей и твердых тел. Наиболее точно для своего времени определил механический эквивалент теплоты составил таблицы упругости паров. Установил (1846) образование аммиака при действии электрической искры на смесь азота и водорода. Сконструировал ряд приборов воздушный термометр, пирометр, гигрометр. Занимался усовершенствованием газового освещения в Париже, Автор учебника Нача.ть-ный курс химии (1847—1849). [c.424]


    Теплота испарения безводной серной кислоты составляет 5.10,7 кдж1кг (122,12 ккал/ кг). [c.17]

    На рис. 5.25 изображена схема производства сульфата ам.мо-ния сатураторным способом. Так как теплоты нейтрализации серной кислоты аммиаком недостаточно для испарения всей воды, вводимой в систему, то очищенный от смолы коксовый газ подогревают до 50—60 ""С. Затем его подают в сатуратор 3, примешивая пароаммиачную смесь, получаемую при дистилляции надсмольной воды. Сатуратор — стальной цилиндрический аппарат с коническим днищем, футерован кислотоупорными плитками. Он заполнен суспензией, состоящей из раствора и кристаллов сульфата аммония, уровень которой поддерживается стоком через циркуляционный бак 5 с гидравлическим затвором, препятствующим прорыву газа. Температура суспензии 55—60 °С. Содержа- [c.250]

    Главная область применения ЗО2— произ-во серной кислоты. Благодаря большой теплоте испарения, а также легкой конденсируемости жидкий ЗО2 применяют в холодильной технике. Будучи сильным восстановителем в водных р-рах, ЗО2 обесцвечивает многие органич. красители, что используется при отбеливании соломы, шерсти, шелка, кукурузной муки и сахара. Жидкий ЗО2 применяют также в целлюлозной пром-сти, в нек-рых органпч. произ-вах как консервирующее вещество (напр., при хранении и перевозке фруктов и ягод). Перевозят 80 в стальных баллонах и цистернах. Сернистый газ является токсич. примесью в атмосферном воздухе промышленных городов при концентрации 0,03—0,05 мг л в воздухе вызывает раздражение глаз, горла, заболевание верхних дыхательных путей. Предельно допустимая концентрация 802 в воздухе производственных помещений 0,01 мг л. [c.415]

    Теплота испарения воды из раствора серной кислоты любой концентрации может быть вычислена как сумма дифференциальной теплоты разбавления и теплоты испарения воды при данной температуре. Например, если 70%-ная серная кислота упаривается до концентрации 76% Н2ЗО4, то количество тепла, затраченного на выпаривание воды, можно вычислить по следующей формуле  [c.27]


Смотреть страницы где упоминается термин Теплота испарения Н и S из серной: [c.118]    [c.109]    [c.353]    [c.284]    [c.230]    [c.17]    [c.87]    [c.14]    [c.14]    [c.242]   
Технология серной кислоты (1956) -- [ c.0 ]

Производство серной кислоты (1956) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Теплота испарения



© 2025 chem21.info Реклама на сайте