Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарения теплота мольная

    Теплота испарения жидкостей. Количество теплоты, поглощаемое веществом при изотермическом испарении жидкости, равновесной со своим паром, называется теплотой испарения (или теплотой парообразования). В зависимости от количества вещества, к которому ее относят, различают мольную теплоту испарения, т. е. теплоту испарения одного моля, и удельную теплоту испарения, отнесенную к 1 г вещества. Мы будем пользоваться только мольными теплотами испарения, так как для них основные закономерности выявляются проще., [c.173]


    Аддитивными методами можно рассчитывать как термодинамические величины (например, критические постоянные, мольную теплоемкость, энтальпию, энтропию, свободную энергию образования Гиббса, теплоту испарения, поверхностное натяжение, мольный объем, плотность и т. д.), так и молекулярные коэффициенты (коэффициенты вязкости, теплопроводности, диффузии). [c.84]

    Испарение. Теплота испарения—перехода жидкой фазы в .газообразную, так же как и теплота плавления, положительна. В этом случае всегда объем (удельный, мольный) газа больше соответствующего объема жидкости, т. е. в уравнении (IV, 56) всегда ,, ,> 1. Поэтому (1р1(1Т, а значит, и йТ (1р также всегда положительны. Следовательно, температура испарения всегда повышается с ростом давления. [c.140]

    Зависимости для расчета теплоты (мольной) испарения и давления насыщенного пара по уравнению Клаузиуса—Клапейрона  [c.187]

    Клапейрона—Клаузиуса) его теплоту испарения и изменение внутренней энергии при испарении, а затем, используя мольный объем жидкого иода, найти величину 0 . [c.251]

    Процесс парообразования сопровождается поглощением тепла. Количество теплоты, поглощаемое единицей массы вещества при изотермическом испарении, называется теплотой испарения. Различают мольную теплоту испарения (т. е. теплоту испарения одного моля кип) и удельную теплоту испарения, отнесенную к одному грамму вещества. [c.75]

    В настоящее время еще невозможно точно установить связь между природой растворителя и его способностью растворять данное высокомолекулярное вещество." Обычно ограничиваются эмпирическим правилом — подобное растворяется в подобном. Иными словами, неполярные полимеры растворяются в неполярных растворителях, а полярные — в полярных. Джи установил связь между способностью растворителей вызывать набухание и растворение полимера и значениями плотностей когезионных энергий этих растворителей. Удельная плотность когезионной энергии /б мол (где — когезионная энергия или скрытая теплота испарения, мол — мольный объем) представляет собой энергию, которую необходимо затратить для того, чтобы раздвинуть молекулы, содержащиеся в 1 см полимера, на расстояние, превышающее сферу их действия. На ряде примеров было показано, что максимальное набухание наблюдается, когда удельные плотности когезионной энергии растворителя и полимера равны или близки. [c.445]


    С. . . . Теплота, кДж/моль образования. плавления испарения растворения. Мольная теплоемкость, Дж/(моль-К) [c.369]

    Плотность энергии когезии (Пд) — это энергия, которую необходимо затратить на раздвижение молекул, содержаш,ихся в 1 см полимера, на расстояние, превышающее сферу их действия и = /F, где Е — мольная теплота испарения, V — мольный объем. [c.19]

    Значение энергии испарения и мольного объема позволяет вычислить основной параметр теории регулярных растворов — плотность энергии когезии или параметр растворимости б. С учетом связи между энергией и теплотой испарения (гл. IV) выражение для параметра растворимости может быть записано в виде  [c.61]

    Примем, что компоненты А и В очень близки между собой по составу, величине и строению молекул, а следовательно, и по свойствам. Будем считать, что они не образуют между собой соединения и неассоциированы (или по крайней мере не меняют при образовании раствора своей степени ассоциации). Воспользуемся упрощенной схемой процесса испарения (см. 110) и примем, что энергия, необходимая для выделения молекул данного вида из раствора, остается такой же, как и чистого жидкого компонента, т. е. теплота его испарения в обоих случаях одинакова. Тогда парциальное давление насыщенного пара Каждого компонента над раствором при постоянной температуре должно быть пропорционально мольной доле его в растворе, т. е. Ра = аЛ/а и Рв = вЛ з- Коэффициент пропорциональности йд определяется при УУл = 1, а Ав —при Л/в=1 они равны давлениям насыщенного пара [c.307]

    Для расчета параметра растворимости твердого вещества бд могут быть использованы значения теплоты испарения и мольного объема этого компонента при температуре плавления в жидком состоянии. На практике чаще используется другой путь, основан- [c.74]

    Мольные энтальпии газа и жидкости. Для некоторого упрощения расчетов пренебрежем влиянием температуры- на теплоемкости компонентов и теплоту испарения гексана используем значения этих параметров при 30 °С. При [c.46]

    В литературе приводится ряд зависимостей для определения коэффициентов массоотдачи на тарелках различных конструкций. Однако большинство их получено путем обобщения экспериментальных данных по абсорбции и десорбции газов и испарению жидкостей в газовый поток. В ряде работ показано, что с достаточной степенью приближения эти данные можно использовать для определения коэффициентов массоотдачи процессов ректификации бинарных систем, для которых мольные теплоты испарения компонентов приблизительно равны. В частности, для тарелок барботажного типа рекомендуются [14] обобщенные критериальные уравнепия типа (VI.39), которые приводятся к удобному для расчетов виду  [c.132]

    ДЯж = ДЯ + где ДЯ"м —мольная теплота испарения мономера. [c.256]

    Закономерности, в той или другой степени подобные описанным, наблюдаются и для многих других свойств органических соединений в газообразном пли в жидком состоянии. Сюда относятся, например, мольная рефракция, теплота испарения, логарифм давления насыщенного пара и др. Поскольку каждая из таких величин для алканов, обладающих аналогичным строением, может быть выражена приближенно как линейная функция числа углеродных атомов в молекуле, то и связь между этими свойствами или соответствующими функциями может быть выражена в линейной форме. В. М. Татевский показал линейный характер такой связи, в частности, между теплотой образования алкана ЛЯ 298 логарифмом давления насыщенного пара при 60 °С и определил постоянные соответствующих уравнений для некоторых групп алканов. В табл. VI, 18 приведены постоянные уравнения вида [c.226]

    Стоимость теплообменной аппаратуры принималась пропорциональной массе аппарата при заданных значениях коэффициента теплопередачи и температур хладагента или теплоносителя. Для расчета мольной теплоты испарения и конденсации продуктов разделения использовалось правило Трутона. Эксплуатационные затраты рассчитывались с учетом расхода хладагента и теплоносителя, а также энергии на перекачку флегмы. Для учета стоимости вспомогательного оборудования (производственное здание, КИП и т. д.) вводились поправочные коэффициенты к стоимости основного технологического оборудования. [c.299]

    Все энергетические величины (внутренняя энергия, энтальпия. тепловые эффекты, теплоты образования, теплоты плавления, испарения и др.) могут выражаться в любых энергетических единицах. Наиболее часто их принято выражать в калориях ( 35) и относить обычно к одному молю вещества (мольные величины), или к одному грамм-атому элемента (атомные величины), или к количеству вещества, указанному в реакции. [c.183]


    Существование таких семейств изомеров, обладающих практически одинаковыми АЯ° (а также одинаковыми АЯ и АЯ°), как показали В. М. Татевский и С. С. Яровой облегчает расчет указанных величин для различных изомеров. Так, для декана имеется 75 изомеров, но число семейств, различающихся по набору разных видов С — С-связей, равно всего 50, а для додекана, имеющего 355 изомеров, число семейств равно 137. В табл. VI, 21 приведены для различных ундеканов рассчитанные таким путем значения АЯ , АЯс и AGf для 298,15 К, причем параметры реакций образования отнесены к газообразному состоянию алкана, а теплоты сгорания даны для жидкого и для газообразного состояний. Описанный метод был использован В. М. Татевским (частично совместно с С. С. Яровым) для построения аналогичных систем расчета и других свойств алканов теплоты испарения при разных температурах, мольного объема, рефракции, логарифма давления насыщенного пара, констант равновесия в реакциях образования из простых веществ, магнитной восприимчивости. Было описано также обобщение метода для соединений других классов и предложено квантово-механическое обоснование его [c.232]

    Величина Ь называется мольной теплотой превращения, в частности мольной теплотой испарения, мольной теплотой плавления и т. д. Если написать [c.152]

    В простейшем случае, основываясь на аддитивности мольных теплот испарения и мольных объемов и не делая никаких предположений о строении растворителя, можно представить парциальную мольную теплоту растворения при бесконечном разбавлении в виде суммы тепловых эффектов растворения отдельных групп (48]. Для экстрагентов, состоящих из активной группы и углеводородных радикалов, парциальная мольная теплота растворения при бесконечном разбавлении ДЯ02 является линейной функцией числа углеродных атомов пс. [c.33]

    Поскольку в смесях, представляющих собой регулярные растворы, взаимная растворимость компонентов зависит от плотности энергии когезии, Гильдебрант назвал корень квадратный из /у параметром растворимости б. Для определения параметра растворимости любого вещества (в кал 1см 1 ) необходимо знать теплоту его испарения и мольный объем  [c.239]

    Теплоты испарения различных жидкостей закономерно связаны с их нормальными температурами кипения. По правилу Траутона (1884) мольные энтропии испарения различных жидкостей в нормальных точках кипения одинаковы  [c.142]

    К первой группе относятся методы выбора по данным о равно-вееии между жидкостью и паром, температурах кипения смесей, растворимости компонентов, свойствам азеотропных смесей [23], мольных теплотах смешения жидкостей и испарения компонентов [25]. Поскольку методы связаны с экспериментальными исследованиями, их эффективность зависит от опыта и интуиции экспериментатора. [c.286]

    Название, химическая формула вещества, мольная масса кип С КР С КР МПа Плотность жидкости 10-3, кг/м Поверхностное натяжение жидкости при 25 С а-103, Н/м Кшгемати-ческая вязкость жидкости V-10, м /с Изобарная теплоемкость при 25 С, кДж/(кг С) Теплота испарения, кДж/кг  [c.206]

    Название, химическая формула вещества, мольная масез кчп °с кр °с Р кр мпа Плотность жидкости Рж Ю кг/м Поверхностное натяжение жидкости при 25 С а-103, Н/м Кинематическая вязкость жидкости V-10 , М-/С Изобарная теплоемкость при 25 °С, кДж/(кг-°С) Теплота испарения, кДж/кг  [c.208]

    Ввиду того, что мольные теплоты испарения различЕгых жидкостей обычно приблизительно одинаковы, а теплоты испарения на 1 кг вещества резко отличаются друг от друга, расчет процесса ректификации ведут в мольных величинах. [c.669]


Смотреть страницы где упоминается термин Испарения теплота мольная: [c.251]    [c.247]    [c.62]    [c.63]    [c.199]    [c.234]    [c.336]    [c.173]    [c.50]    [c.47]    [c.222]    [c.57]    [c.129]    [c.483]    [c.12]    [c.233]    [c.145]    [c.174]    [c.288]    [c.288]   
Учебник физической химии (1952) -- [ c.56 ]

Учебник физической химии (0) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Теплота испарения



© 2025 chem21.info Реклама на сайте