Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Композиционные материалы с короткими волокнами

Рис. 3.24. Модель композиционного материала, хаотически армированного короткими волокнами. Рис. 3.24. Модель <a href="/info/1904">композиционного материала</a>, <a href="/info/1440743">хаотически армированного</a> короткими волокнами.

    Микроволокна используют для создания волокнистых КМ. На рис. 3.41 приведены схемы возможного расположения коротких волокон в матрице и их дифракционная картина [18]. Для получения последней микрофотографию используют как дифракционную решетку. На рис. 3.42 показан характер разрушения композиционного материала А — АЬОз (волокна) при сжатии. Излом происходит при изгибе волокон. Последние проскальзывают друг относительно друга, сообщая сдвиговую нагрузку матрице. [c.112]

Рис. 4. Схема разрушения композиционного материала, упрочненного короткими волокнами различной длины Рис. 4. <a href="/info/602187">Схема разрушения композиционного материала</a>, <a href="/info/601730">упрочненного короткими волокнами</a> различной длины
    Для оценки прочности композиционных материалов с короткими волокнами снова следует вернуться к материалам на основе непрерывных волокон. Если волокна проходят из одного конца длинного образца до другого, то при растяжении вдоль волокон волокна и матрица деформируются одинаково при условии прочной адгезионной связи между ними. Тогда нагрузка, выдерживаемая материалом в целом, будет распределяться между компонентами материала пропорционально их относительным площадям поперечного сечения. Для любого напряжения в материале можно записать уравнение  [c.91]

    Стойкость композиционных материалов к разрушению определяется большим числом факторов и существует множество предположений, какой из вероятных микромеханических механизмов разрушения вносит основной вклад в работу разрушения. Более подробное обсуждение этого вопроса будет проведено при анализе работы разрушения материалов с непрерывными волокнами, а здесь изложены некоторые общие представления. В композиционных материалах на основе хрупкой матрицы (отвержденные эпоксидные или полиэфирные смолы) и хрупких волокон (стеклянных, углеродных или борных) поверхностная энергия разрушения волокон равна примерно 5 Дж/м , матрицы — не более 500 Дж/м а материала в целом при хорошем его качестве и высокой степени ориентации — около 200-10 Дж/м и даже выше. Предполагается два основных механизма поглощения энергии при разрушении таких материалов — на преодоление трения волокон относительно матрицы при их извлечении из нее или на упругий отрыв волокон от матрицы [65]. В композициях с короткими волокнами более важную роль играет первый механизм, так как концы большинства волокон должны быть ближе к поверхности трещины, чем половина критической длины и, следовательно, эти концы будут извлекаться из матрицы при распространении трещины. При этом работа по преодолению трения волокон относительно матрицы при их извлечении дает основной вклад в измеренную энергию разрушения материала. Купер [66] показал, что максимальная энергия разрушения композиций с короткими волок- [c.100]


    Хотя усталостная выносливость полимеров с высокой объемной долей непрерывных однонаправленных углеродных или борных волокон обычно достаточно высока, стойкость композиций разных типов с короткими волокнами к циклическим нагрузкам значительно меньше, так как менее устойчивая матрица в этом случае подвергается большим напряжениям. В матрице легко инициируются начальные повреждения, что приводит к нарушению целостности композиционного материала, хотя волокна остаются неповрежденными. Задолго до резкого падения жесткости материала его проницаемость для воды или водяных паров сильно возрастает. Граница раздела фаз особенно чувствительна к усталостному разрушению, так как сдвиговые напряжения на границе раздела меняют свое направление в каждом цикле, а по краям волокон наблюдается особенно высокий уровень концентрации сдвиговых напряжений. Возможно также, что в композиционных материалах как с хаотическим, так и с ориентированным распределением коротких волокон, концы волокон и слабые места границы раздела служат центрами зарождения усталостных трещин. [c.105]

    Если фхт, то возможны упругие или пластические ограничения поперечному сжатию и, следовательно, возможно возникновение объемно-напряженного состояния материала, обусловливающего повышение его прочности по сравнению с расчетной формулой (2.7), которая с этой точки зрения может рассматриваться как нижний предел. Эти эффекты обычно очень малы и формула простого правила смеси дает неплохое приближение для расчета прочности однонаправленного волокнистого композиционного материала. Так как эта формула выведена из условия однородного поля напряжений вдоль волокон, она должна быть модифицирована для расчетов прочности композиций с короткими волокнами для двух предельных случаев. В первом случае волокна имеют длину больше критической и могут быть нагружены до разрушения. При разрушении, однако, среднее напряжение в волокне Of меньше, чем 0/. Истинное значение о/ зависит от точной картины распределения напряжений на концах волокон. Если предположить, что растягивающее напряжение в волокне возрастает от конца волокна по линейной зависимости (рис. 2.35), то среднее эффективное разрушающее напряжение для волокна можно рассчитать по формуле [c.92]

    Доля реальной прочностп композиционных материалов с ориентированными короткими волокнами от идеальной прочности однонаправленного материала с непрерывными волокнами в решающей степени определяется величиной Ц1с, которая в свою очередь зависит от прочности и диаметра волокон, а также от прочности адгезионной связи или напряжений трения на границе раздела волокно — матрица. Если построить график зависимости [c.92]

    В отличие от композиционных материалов с непрерывными волокнами в материалах с короткими волокнами значительно труднее добиться одноосной ориентации волокон. Разработаны несколько процессов для ориентации коротких волокон типа асбестовых или нитевидных монокристаллов [56], однако распределение волокон в таких широко распространенных материалах как полиэфирные пресс-композиции и литьевые армированные термопласты обычно близко к хаотическому. Хаотическое распределение резко снижает эффективность усиления полимеров короткими волокнами, так как напряжения, передаваемые на неориентированные волокна, могут быть очень малыми или даже равными нулю. Одкнм из путей учета относительной эффективности усиления волокнами является использование коэффициентов эффективности для волокон с заданным типом ориентации и для композиции в целом. Кренчель предложил этот способ для цементов, усиленных волокнами [57]. Он рассчитал коэффициенты эффективности усиления для некоторых идеализированных типов распределения волокон, показанных на рис. 2.38. Если композиционной материал имеет соответствующее распределение волокон, то его проч- [c.93]

    Одной из трудностей, связанных с переработкой термопластов, наполненных короткими волокнами, литьем под давлением или экструзией является сильное повреждение волокон, поэтому простые предположения, которые делались при выводе формул (2.7) и (2.8), становятся некорректными. В работе [62] показано, что в таких материалах Ихмеется спектр длин волокон. На основе математической модели, в которой вклады в прочность композиционного материала волокон с длиной выше или ниже критической суммируются отдельно по эффективному интервалу длин, получена формула [c.96]

    В однонаправленных композиционных материалах с бесконечными волокнами сдвиговая прочность в плоскостях, параллельных плоскости ориентации волокон, очень мала, если не предпринимаются специальные меры для резкого повышения прочности сцепления волокон с матрицей. Однако даже при обработке поверхности волокон сдвиговая прочность материалов в плоскости ориентации волокон равна сдвиговой прочности пластичной матрицы. С этой точки зрения одним из важнейших особенностей композиций с короткими волокнами является то, что в них трудно или экономически нецелесообразно добиваться полной ориентации волокон, и поэтому в материалах даже с хорошо ориентированными волокнами имеется большое число волокон, расположенных под некоторым углом к направлению ориентации. Эти волокна затрудняют сдвиговые деформации в плоскости ориентации и повышают сдвиговую прочность материала. Они также увеличивают его трансверсальную прочность при растяжении и уменьшают тенденцию к смешению волокон вдоль действующих или возникающих растягивающих усилий [64]. [c.100]


    Экспериментальных данных о поведении композиций с короткими волокнами при циклических нагрузках очень мало. По данным, полученным в работе [75], установлено, что предел усталостной выносливости поликарбоната при 10 циклов возрастает в 7 раз при введении 40% стекловолокон длиной 6,4 мм. В работе [76] определено число циклов до разрушения эпоксидных смол, наполненных короткими борными волокнами, и установлено, что при циклических нагрузках с амплитудой, составляющей любую долю от разрушающего напряжения, число циклов до разрушения быстро возрастает с увеличением характеристического отношения волокон, достигая постоянных значений при lid около 200. Эту величину можно считать критическим характеристическим отношением, выше которого усталостная прочность постоянна и пропорциональна статической прочности при изгибе (рис. 2.48). В этой же работе исследованы свойства эпоксидных смол с ориентированными асбестовыми волокнами. При этом установлено, что их поведение мало отличается от поведения эпоксидных смол с борными волокнами длиной 25 мм. Оуэн с сотр. [77] показали, что усталостная прочность при 10 циклах полиэфирной смолы, наполненной стекломатом с хаотическим распределением волокон, колеблется между 15 и 45% от разрушающего напряжения при статическом растяжении. В работе [78] изучали поведение при циклическом растяжении и изгибе эпоксидной смолы, содержащей 44% (об.) ориентированных стеклянных волокон длиной 12,5 мм. Полученные результаты показывают, что этот материал является перспективным для изделий, работающих при циклических нагрузках, так как предел его усталостной выносливости составляет более 40% от разрушающего напряжения при растяжении. Эти результаты необычны для стеклопластиков, для которых, очевидно, нет истинно безопасного нижнего предела при циклических нагрузках даже в случае непрерывных волокон [79]. Недавно были исследованы свойства при циклических нагрузках промышленных полиэфирных премиксов [80]. Полученные кривые зависимости амплитудного напряжения от числа циклов до разрушения для литьевых премиксов с хаотическим в плоскости распределением волокон (рис. 2.49) можно сравнить с кривыми, полученными Оуэном с сотр. [81] для композиционных материалов с однонаправленными непрерывными волокнами и для слоистых пла- [c.106]

    При обсуждении прочности композиций с короткими волокнами использовалось без дополнительного качественного анализа хорошо известное простое правило смеси для композиционных материалов с непрерывными волокнами [уравнение (7)]. Оно основано на изодеформационной модели материала, в которой принимается, что волокна имеют четко определенное и единственное значение разрушающего напряжения при растяжении о/. Это, в принципе, неверно для хрупких волокон, таких как стеклянные, углеродные и борные, прочность которых подчиняется статическому распределению. Поэтому необходимо уточнить, какое значение О/ необходимо использовать в уравнении (7). Во многих случаях правило смеси дает удовлетворительное приближение для проч- [c.109]

    ЭТОГО, если неэффективная длина волокон очень мала, а разброс прочности волокон велик, из теории наиболее слабых связей можно сделать вывод, что прочность композиционного материала может быть больше, чем рассчитанная по правилу смеси с использованием средней прочности волокон, определенной при обычной длине между зажимами [91]. Для карбопластиков, однако, было установлено [99], что их реальная прочность ниже, чем рассчитанная экстраполяцией прочности волокон к очень короткому расстоянию между зажимами с использованием модели невзаимодействующих жгутов волокон. Это свидетельствует о том, что в исследованных материалах наблюдается значительное взаимодействие между разрывами отдельных волокон. В табл. 2.5 приведены типичные показатели прочности некоторых экспериментальных и промышленных композиционных материалов с непрерывными волокнами. [c.114]

    Армирующие волокна могут применяться по-разному. Короткие волокна из целлюлозы и асбеста и пггапельные стекловолокна могут непосредственно, без предварительной обработки, вводиться в композиционный материал в процессе формования. Кроме того, перед пропитыванием полимерным связующим короткие волокна могут быть подготовлены различными способами штапельные волокна перерабатываются в мат, натуральные и целлюлозные— в бумагу, а короткие натуральные волокна — в нити для последующего изготовления ткани. Применяют [c.11]


Смотреть страницы где упоминается термин Композиционные материалы с короткими волокнами: [c.125]    [c.125]    [c.50]    [c.88]    [c.89]    [c.90]    [c.92]    [c.93]    [c.81]    [c.101]    [c.129]   
Смотреть главы в:

Промышленные полимерные композиционные материалы -> Композиционные материалы с короткими волокнами


Промышленные полимерные композиционные материалы (1980) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Композиционные материалы, армированные короткими волокнами

Коротких

Коротков

Материал композиционный



© 2025 chem21.info Реклама на сайте