Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртутный столб, изм

    Величина давления может быть измерена также высотой уравновешивающего его столба жидкости (обычно воды или ртути). Соответствующие единицы — метр водяного столба (м вод. ст.), миллиметр водяного столба (мм вод. ст.), миллиметр ртутного столба (мм рт. ст.) и др. [c.8]

    Па 1 миллиметр ртутного столба (мм рт. ст.) = = 133,322 Па 1 миллиметр водяного столба [c.352]


    Постоянные значения удельной теплоемкости и теплоты парообразования для воды и водяного пара обычно применяются длл ориентировочных расчетов нри условии использования воды и водяного нара нри атмосферном давлении. В производственных условйях вода и водяной пар применяются при различных давлениях — от нескольких миллиметров ртутного столба до десятков и даже сотен атмосфер. С изменением давления свойства воды и водяного пара меняются. Для более точных тепловых расчетов значения теплоемкости, теплосодержания, теплоты парообразования, теплоты конденсации воды и водяного пара находят из так называемых паровых таблиц. Указанные таблицы составляются на основании точных научных исследований термодинамических свойств воды и водяного пара и утверждаются на международных конференциях. Паровые таблицы имеются во всех справочниках и учебниках по тепловым установкам [c.16]

    Миллиметр ртутного столба мм рт. ст. [c.280]

    Капельный ртутный электрод (рис. XXIV, 4) представляет собой стеклянный капилляр О, через который под давлением ртутного столба медленно вытекает ртуть. Образующиеся на конце капилляра ртутные капли через равные промежутки времени (обычно в пределах 0,2-ь6 се/с) отрываются от капилляра и падают на дно сосуда А. Каждая ртутная капля до момента ее отрыва служит электродом. При помощи аккумулятора Р и потенциометра V к электродам С п Е полярографической ячейки прикладывают определенное напряжение и чувствительным гальванометром измеряют силу тока, "который протекает при этом через систему. При прохождении тока через ячейку в общем случае изменяются потенциалы обоих электродов кроме того, часть приложенного напряжения падает в растворе  [c.642]

    В технических расчетах давление чаще всего выражают (н зависимости от его величины) в атмосферах, в миллиметрах ртутного столба мм рг. ст.), в миллиметрах водяного столба мм вод. ст.), и в килограммах на 1 кв. сантиметр кГ/см ). [c.12]

    Миллиметры ртутного столба (мм рт.ст.) - общепринятая единица давления, см. разд. Б.4. Очень малые величины, не поддающиеся определению. [c.382]

    Нефть перегонялась при помощи дефлегматора до 200° при атмосферном давлении, а — 200—250° в вакууме при давлении 10 мм ртутного столба. [c.177]

    Так, например, мольный состав этилового алкоголя в азеотропической точке его раствора с водой (см. таблицу на стр. 35) при давлении в 760 мм, ртутного столба равен 90%. Если же снизить давление до 100 мм, то азеотропическая точка будет отвечать мольному содержанию этилового алкоголя в 99,6%, т.е., по существу, экстремальный состав будет отвечать практически чистому этанолу. [c.137]


    Для измерения атмосферного давления служат барометры, показывающие обычно давление в миллиметрах ртутного столба (барометрическое, или атмосферное, давление — ата). [c.14]

    Рнас — давление насыщенных паров при расчетной температуре в миллиметрах (Н/м ) ртутного столба  [c.361]

    Миллиметр ртутного столба [c.546]

    Малые давления, а также разности (перепады) давлений выражают в метрах водяного столба или в миллиметрах водяного и ртутного столба. [c.116]

    Потеря напора в теплообыенных аппарата . Выбор скорости потока теплоносителя и допустимой потери напора в теплообменных аппаратах связан с общей схемой процесса. В регенераторах тепла пародистиллятов вакуумных колонн потери напора на паровых потоках исчисляются несколькими миллиметрами ртутного столба. Для паровых потоков атмосферных колонн и колонн, работающих под давлением, потеря напора может достигать значительно больших величин. Расчет потери напора ведут по известным, уравнениям гидравлики, учитывая местные гидравлические сопротивления, возникающие при прохождении потока через прорези в перегородках, между перегородками, при обтекании труб, на поворотах и т. д. [c.268]

    Пипетка помещена в стеклянную муфту 5, заполненную водой. Газ впускается в пипетку через патрубок 3. Из пинетки газ выдавливается давлением ртутного столба, создаваемого напорной грушей. Измеряется время подъема жидкости от нижней метки до верхней. Относительная плотность [c.239]

    На плато Колорадо в США, высота которого над уровнем моря составляет около 2500 м, атмосферное давление равно приблизительно трем четвертям давления на уровне моря. Выразите это давление в стандартных атмосферах, паскалях и миллиметрах ртутного столба. [c.117]

    Недавно было высказано предположение, что реакция (1) имеег фактор частоты скорее чем в этом случае реакция (5в) приобретает большее значение. При давлении в 1 ат, вероятно, еще преобладает реакция (5а), но при давлении в несколько миллиметров ртутного столба должны иметь место реакции (5а), (56) и (5в). При этом приближенное решение ряда уравнений становится невозможным, но тем не менее остается в силе общее положение, что нужно рассматривать не одну реакцию обрыва, а несколько. [c.25]

    Миллиметр ртутного столба (мм рт. ст.) Электронвольт (эВ) Калория (кал) Килокалория (ккал) Дебай (О) [c.254]

    Какая связь между свинцовыми блоками, туфлями на высоких каблуках, звукоснимателем и атмосферой Как показывают опыты, описанные в этой части, атмосферное давление действует на все объекты, находящиеся в атмосфере. В обычные дни на уровне моря давление составляет около 14,7 фунтов на каждый квадратный дюйм вашего тела, что соответствует одной атмосфере. Однако давление можно выражать и другим способом. Данные о давлении в воображаемом полете выражались в миллиметрах ртутного столба. 1 атм - 14 фунт/дюйм = 760 мм рт. ст. Прогноз погоды может содержать сообщение о том, что атмосферное давление равно 30 дюймам ртутного столба . Почему Это объяснит следующий эксперимент. [c.384]

    Плотность жидкой ртути равна 13,596 г см . Как выразится давление, равное 1 мм ртутного столба (1 мм Hg) в паскалях  [c.116]

    На больших высотах, где атмосферное давление ниже нормального (1 атм), температура кипения воды снижается. Бюро погоды США определяет изменения давления на разной высоте с помощью простого правила дюйм ртутного столба на каждые 1000 футов (приблизительно 25 мм рт. ст. на каждые 300 м). Нормальное (стандартное) атмосферное давление равно 29,9 дюйма ртутного столба (760 мм рт. ст.). [c.128]

    Если стеклянную трубку, закрытую с одного конца, наполнить ртутью (Н ), а затем перевернуть открытым концом в сосуд с ртутью, как показано на рис. 3-1,а, уровень ртути в трубке будет опускаться до тех пор, пока высота ртутного столбика над поверхностью ртути в сосуде не достигнет приблизительно 760 миллиметров (мм). Давление, оказываемое на поверхность ртути в сосуде весом ртутного столбика в трубке, в точности уравновешивается давлением окружающей атмосферы. Вследствие равенства этих давлений, действующих в противоположных направлениях, ртуть больше не выливается из трубки. Подобное устройство (называемое ртутным барометром) было впервые использовано итальянским математиком и физиком Эвангелиста Торричелли (1608-1647) для измерения атмосферного давления. Торричелли показал, что высота столбика ртути в барометрической трубке не зависит от формы и размеров трубки, а следовательно, определяется не весом ртутного столбика, а давлением у его основания. Атмосферное давление на уровне моря поддерживает столбик ртути высотой 760 мм (в среднем). Поскольку в старину для измерения давления пользовались ртутными барометрами, в качестве единицы измерения давления применялся миллиметр ртутного столба . Давление опре- [c.115]

    При сборке вакуумных установок следует обращать внимание на диаметр отводных трубок, которые не должны быть слишком узкими. Установлено, что если диаметр перегонной колбы превышает диаметр отводной трубки более чем в десять раз, уже при средней скорости перегонки сопротивление движению паров оказывается выше допустимого. Давление внутри перегонной колбы при этом оказывается на несколько миллиметров ртутного столба выше, чем давление по манометру. Узкая отводная трубка или другие сужения на пути паров перегоняемого вещества нередко являются, таким образом, причиной того, что наблюдаемая температура кипения веще- [c.150]


    При снятии электрокапиллярных кривых с помощью капиллярного электрометра на ртутный микроэлектрод, находящийся в капилляре и контактирующий с раствором, подается определенный потенциал и измеряется высота столба ртути, удерживаемого в стеклянной трубке над ртутным мениском в капилляре. Потенциал па границе между раствором и ртз тью в капилляре задается наложением определенной э. д. с. (например, от потенциометрической установки) на электрохимическую снстехму, в которой одним электродом служит капиллярный электрод, а другим—соответствующий электрод сравнения с известным значением потенциала. При это.м электрод сравнения, как неполяризуемый, сохраняет неизменное значение потенциала, а идеально поляризуемый капиллярный ртутный электрод принимает значение потенциала, отвечающее приложенной внешней э. д. с. Как это следует из теории капиллярности, высота ртутного столба над ртутным мениском в капилляре является мерой поверхностной энергии на границе ртуть — раствор. Соотношение между этими двумя величинами можно записать в виде уравнения [c.236]

    При низких давлениях газа (несколько миллиметров ртутного столба) и не очень малом сопротивлении внешней цеии формируется тлеюи ий разряд. Если же сопротивление внешней цепи невелико, источник тока достаточно мощный, а давление газа более высокое, то вслед за пробоем образуется дуговой разряд. Тлеющий разряд можно постепенно перевести в дуговой, увеличивая силу тока (путем уменьшения внешнего сопротивления цеии) и одновременно повышая давление. При этом можно получить различные формы тлеющего разряда. [c.239]

    В действительности природный газ заключает смесь различных газов и паров. Известно, что согласно закону Дальтона давление газовой смеси в данном объеме составляет сумму парциальных давлений отдельных компонентов смеси. Если мы возьмем BanpHSfn гексан н допустим, что газовая смесь содержит последний в количестве 10%, причем она находится под давлением одной атмо-сферы (760 мщ), то парциальное давление гексана будет равняться 76 мм. Для ожижения гексана при 20° С нужно поднять парциальное давление выше 102 Мм ртутного столба, иначе говоря, приложить К(У всей смеси давление в ю раз большее, т. е, 1 020 мм ртутного столба. По мере протекания конденсации гексана, концентрация паров его в смеси будет очевидно уменьшаться. [c.133]

    После пятичасового нагревания до 1160° газ содержал 27% метана и 73,% водорода. В. Гарднер 2 пропускал определенное количество этапа с постоянной скоростью и при постоянном давлении через трубку берлинского фарфора при определенной температуре. Прибор, которым пользовался Гарднер, состоял из запаянной трубки, наполненной хлористым кальцием, ртутного манометра, стеклянного шара, трубки, помещенной в нечь, двух конденсационных трубок и ртутного насоса. Все части были из стекла и представляли собой замкнутую систему. Все меота соединений были спаяны или герметически пришлифованы друг к другу. Нагрев был электрический. В каждом опыте в систему вводились 1800 мл этана и пропускались со скоростью 50—60 см под давлением 450—550 мм ртутного столба. [c.238]

    В зависимости от требуемой глубины вакуума пароструйные эжекторы имеют число ступеней от одной до пяти. В соответствии с заданной производительностью монтируют по два и более пароструйных эжекторов в потоке. Одноступенчатые эжекторы используют, когда глубина вакуума не превышает 68Ьммрт.ст., двухступенчатые, когда остаточное давление должно быть не более 50 ммрт.ст., трехступенчатые — в пределах 50—1 мм рт. ст. Наконец, четырех- и пятиступенчатые эжекторы применяют, когда остаточное давление должно исчисляться долями миллиметра ртутного столба. В нефтеперерабатывающей промышленности обычно применяют двух- и трехступенчатые эжекторы. [c.246]

    При 50 мм можно удобно фракционировать нефтяные фракции приблизительно до 170° (около 250— 260° объемного давления). Более высококииянще фракции можно перегонять, пользуясь колонной или др>тим дефлегматором, только при более низком давлении — до 12—15 мм ртутного столба, и при таких условиях невозможно исследовать фракции, кипящие выше 350° обыкновенного да -вления, и исследование их путем перегонки пока еще открытый вопрос, ожидающий разрешения. Вероятно путем перегонки в вакууме, измеряемом долями миллиметра, этот вопрос не удастся разрешить, вследствие высокой вязкости сте-каюп(ей в куб флегмы. [c.53]

    Температуры кипения этилйензол—135,8°—135,5° мета-ксилол—138,9° пара-ксилол—138,2° орто-ксилол— 149,5—144,7°. С довольно большим приближением, в пределах 740—770 жм ртутного столба, измененне давления вя I мм соответствует изменению температуры кипения всех изомеров на 0,050°. С юдяным паром ксилолы перегоняются при 93,5—94°. [c.406]

    Имея в виду 1 1,1с.01 ие давления (речь идет о даплониях в несколько десятков миллиметрог. ртутного столба и выше) и положив константу скорости рекомбинации 1 то[юго порядка равной 10 см моль - сек (как это сделали Керр н Т])отман-Диккенсон [349]), из известных абсолютных 31 а-чений и температурной зависимости величин Д вычислим константы скоро- [c.149]

    Техника измерения давлений достигла своего совершенства п предела по точности в газовой термометрии. Описание точного манометра, используемого в лаборатории Национального исследовательского совета (Оттава, Канада), приведено Берри [2]. Он подобен манометру, который применял Стимсоп в Национальном бюро стандартов США. Манометр расположен в изолированной комнате, в которой поддерживается постоянная температура, и защищен от механических вибраций. Чтобы исключить неточности за счет капиллярной коррекции, приходится использовать капилляры очень большого диаметра — около 80 мм. Высоту столба ртути определяют с помощью электростатических измерений емкости, используя поверхность ртути в качестве одной пластипы конденсатора. Такая система имеет воспроизводимость 2- 10 , но абсолютная точность будет меньше из-за некоторой неопределенности значений плотности ртути и ускорения свободного падения. Плотность ртути в настоящее время известна с точностью около 2-10 [5]. В большинстве стран ускорение свободного падения может быть найдено с точностью 1- -2-10 относительно стандартного Потсдамского значения, которое установлено с точностью 15-Ю . Все это вносит самую большую неопределенность в определение абсолютного давления (например, в дин1см ) по высоте ртутного столба, однако не влияет на относительные измерения. [c.76]

    Здесь уместно сделать краткое замечание о единицах измерения давления. Основная единица в системе СГС — это дин1см , однако в связи с тем, что эта единица слишком мала для практических целей, вместо нее используется бар (1 бар = = 10 дин/см ). По общему согласию [16], большинство экспериментаторов приводит давление в барах, и такие единицы, как атмосферы и миллиметры ртутного столба, становятся ненужными. Атмосфера определяется через бары (1 аглг = 1,01325 бар точно), а миллиметры ртутного столба заменены торами (1 тор = = 1/760 атм точно). Единственная причина, по которой в настоящей книге используются атмосферы, состоит в том, что большинство р—V—Т -данных приведено в литературе для давлений, измеренных в этих единицах. [c.80]


Смотреть страницы где упоминается термин Ртутный столб, изм: [c.8]    [c.13]    [c.73]    [c.252]    [c.306]    [c.202]    [c.415]    [c.133]    [c.10]    [c.115]    [c.177]    [c.178]    [c.98]    [c.41]    [c.112]    [c.583]    [c.94]    [c.144]   
Краткий справочник химика Издание 6 (1963) -- [ c.554 ]

Краткий справочник химика Издание 4 (1955) -- [ c.495 ]

Краткий справочник химика Издание 7 (1964) -- [ c.554 ]




ПОИСК





Смотрите так же термины и статьи:

ртутный



© 2024 chem21.info Реклама на сайте