Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен в почве

    Способность к ионному обмену в значительной степени определяет функционирование и плодородие почв, которые являются сложной дисперсной системой, содержащей высокодисперсные нерастворимые силикаты и алюмосиликаты (прежде всего в виде кремнезема и глин) и органо-минеральные соединения, образующиеся при разложении органических остатков (в целом — почвенный поглощающий комплекс, по Гедройцу). Состав почв, их способность к ионному обмену и их плодородие в большой мере зависят от климатических условий. Выветривание горных пород приводит к образованию различных глинистых минералов, способных к обмену катионов, при емкости обмена до 1 г-экв/кг. [c.212]


    Многие неорганические соединения в небольших количествах необходимы для роста растений, но более высокие их концентрации оказываются токсичными. Типичным примером может служить бор. Многие зерновые культуры и разновидности трав чувствительны к высоким концентрациям бора, в то же время некоторое количество бора может поглощаться этими растениями. Важным фактором является содержание натрия в сточной воде. Высокое отношение содержания натрия к содержанию многовалентных катионов оказывает неблагоприятное влияние на растения и грунт. Растениям трудно получать воду из раствора с повышенным содержанием солей, и если натриево-адсорбционное отношение слишком высоко, то грунтовая структура теряет пористость. Засоленность почвы представляет собой более серьезную проблему для ирригации в засушливых районах, где быстрое испарение приводит к увеличению концентрации солей. В северных районах с более влажным климатом накопление солей не может оказаться таким критическим фактором для выращивания фуражных культур. Концентрация растворенных минеральных примесей в воде может оказаться существенным фактором и в том случае, если предполагается прямое повторное использование восстановленной воды. Наиболее распространенными растворимыми солями являются сульфаты и хлориды натрия, калия, магния и кальция. Хотя некоторые из них задерживаются в грунте при ионном обмене, общее содержание растворенных веществ в очищенной воде может быть таким же, как и в исходной сточной воде. Бор, селен и нитрат не задерживаются грунтами и проходят вместе с потоком воды через толщу груита, если они уже прошли через растительную и микробиальную зоны. [c.398]

    Обменная адсорбция имеет большое значение в земледелии, биологии и технике. Почва способна поглощать и удерживать определенные ионы, например катионы К и NH4, содержащиеся в удобрениях и необходимые для питания растении. Взамен этих катионов почва выделяет эквивалентные количества других катионов, например Са + и Анионы, как, например, СГ, NO3, SOf, почти не поглощаются почвой. Согласно К. К- Гедройцу (1933 г.), детально исследовавшему явление обмена ионов в почве, поглощать основания способен так называемый поглощающий комплекс— высокодисперсная смесь нерастворимых алюмосиликатов и органоминеральных соединений. От природы поглощенных ионов в значительной мере зависят физические и агротехнические свойства почвы. [c.150]

    Ионный обмен характерен для таких твердых адсорбентов, как почвы, глины, силикагели, окись алюминия, а также для специально синтезируемых материалов типа смол. Все адсорбенты такого типа, для которых характерен процесс эквивалентного обмена ионов, называется ионитами, или ионообмен-никами. Иониты, обменивающие катионы, называются катионитами, а анионы — анионитами. [c.146]

    Ионный обмен наблюдается при удобрении почв и в процессе почвообразования. Кроме почв, к ионному обмену способны многие природные минералы. Так, например, химический состав минеральных вод и лечебных грязей в значительной степени зависит от ионного обмена. Процессы обмена ионов щелочных металлов имеют исключительно важное значение для баланса их в земной коре и воде океанов. [c.70]


    Ионный обмен, т. е. обратимые химические реакции между компонентами электролита, находящимися в растворе, и подвижными обмениваемыми катионами или анионами ионита, широко распространен в природе и используется в лабораторной и промышленной практике. Ионообменными свойствами обладают растительные и животные ткани, некоторые минералы и синтетические вещества. Ионный обмен лежит в основе миграции элементов в почвах, изменения их структуры, образования плодородных почв и извлечения питательных элементов корнями растений из почвенного раствора. Он играет значительную роль в формировании природных солевых [c.299]

    Ионный обмен в почвах. Измерения, проведенные Гедройцем, показали, что величина д в известной мере характеризует агротехническую ценность почвы. Так, для бедных почв (подзол, суглинки) д составляет всего 0,05—0,2, для каштановых — 0,3—0,4, для чернозема — 0,6—0,8 экв/кг. Однако существенна не только количественная д), но и качественная характеристика обменного комплекса. Так, торфяные почвы обладают большой емкостью (0,6—1,0 экв/кг), однако, в отличие от чернозема, где противоионами являются, в основном, Са " и Мд + ионы, торф содержит в обменном комплексе главным образом ион Н+. Этот ион не представляет агрохимической ценности, поскольку растения вырабатывают его сами в процессе жизнедеятельности. Поэтому торф нуждается в обогащении солевыми катионами, что достигается известкованием почв и обработкой их аммиачной водой. Оба мероприятия— типичные ионообменные процессы, в которых избыток ОН способствует выведению из обменного комплекса трудно удаляемых ионов Н"  [c.189]

    Способность к ионному обмену в значительной степени определяет функционирование и плодородие почв, которые 254 [c.254]

    К природным неорганическим ионитам, обменивающимся катионами, относятся кристаллические силикаты типа цеолитов шабазит, глауконит и др. к природным анионитам — некоторые минералы, например, апатит. Природными ионитами органического происхождения являются, например, содержащиеся в почве гуминовые кислоты — высокомолекулярные соединения с различными функциональными группами, способными к ионному обмену. Они обладают амфотерными свойствами и поэтому могут обменивать как катионы, так и анионы. Природные иониты не нашли широкого практического применения, так как имеют ряд недостатков, в частности, они химически нестойки и не обладают достаточной механической прочностью. [c.69]

    В качестве источников водоснабжения используются пресные водоемы, как подземные, так и поверхностные. К подземным относятся грунтовые, межпластовые, артезианские, карстовые воды, состав которых определяется условиями их образования. Так, состав грунтовых вод зависит от возможностей питания их атмосферными осадками, от характера почв и подстилающих пород, с которыми контактирует вода, от санитарного состояния вышележащих водоносных горизонтов. В формировании состава артезианских вод решающее значение имеют глубинные геологические структуры. Химический состав подземных вод формируется в результате таких процессов, как выщелачивание горных пород, растворение, сорбция, ионный обмен и т. д. Защищенность артезианских водоносных пластов обеспечивает постоянство состава воды и почти полное отсутствие в них микроорганизмов. [c.25]

    Самые ранние описания систематических исследований ионообменных свойств относятся к ионному обмену на почвенных минералах [2]. Прежде чем было доказано существование ионов в растворе и установлено кристаллическое строение соединений, было обнаружено, что при обработке почвы солями аммония ионы аммония поглощаются почвой и при этом вытесняется эквивалентное количество кальция. Как было показано, этот ионный обмен имеет обратимый характер и протекает с участием эквивалентных количеств поглощенного. и выделенного [c.14]

    Обычно бывает невозможно рассчитать составляющую ионного обмена, относящуюся к глинистым минералам почв, поскольку значительную емкость катионного обмена имеют и другие почвенные компоненты, например аллофаны и органическое вещество (табл. 3.7). Аллофан представляет собой кремне-алюминиево-водный гель, состоящий из полых сфер диаметром 3—5 мм, стенки которых построены из подобного каолиниту материала. Позиции катионного обмена находятся внутри полых сфер, а емкость катионного обмена варьирует в зависимости от обменного катиона, его концентрации и pH почвенной влаги. Ионный обмен в почвенном органическом веществе в основном вызван диссоциацией карбоксильных групп при pH выще 5. [c.115]

    Новый метод обогащения урана ионным обменом и его использование при определении урана в пробах почв [2625]. [c.348]

    Ионный обмен при анализе почв позволяет одновременно с разделением компонентов анализируемой смеси концентрировать микроэлементы из почвенных вытяжек (что особенно важно при анализе бедных микроэлементами почв), отказаться от громоздких традиционных методов [c.433]

    Растворение солей, адсорбция и ионный обмен имеют место и при проникновении воды в глубь почвы. Длительность взаимодействия воды с почвой, контакт с подстилающими породами и фильтрация через грунты обусловливают особенности состава, присущие подземным водам. [c.19]

    Теоретические и экспериментальные исследования по равновесию ионного обмена на природных объектах [8—10, 17—40, 109—1321 касались в основном обмена ионов на почвах ж минералах. Не останавливаясь на ранних работах по ионному обмену на минералах, опубликованных еще в прошлом веке (работы Уэя, Лемберга и др.), рассмотрим ионный обмен на почвах. Особенности ионного обмена на почвах связаны с наличием органического поглощающего комплекса почв [41]. Однако термодинамика обычно рассматривает процессы ионного обмена независимо от механизма связы-вания ионов. Поэтому теоретические представления, касающиеся равновесия ионного обмена па почвах, могут быть распространены на ионный обмен в горных породах. [c.64]


    Рассматривая ионный обмен в почвах как обратимую реакцию, Гапон для обмена одновалентных ионов (3.13) предложил следующее уравнение [9]  [c.64]

    Коли в начальный момент времени на почве происходит обратимый ионный обмен, то он, без сомнения, протекает в диффузионной области кинетики. Не исключено, что, начиная с определенного времени, процесс переходит в кинетическую область (если механизм сорбции претерпевает изменение и приобретает необратимый характер, а скорость этого процесса становится меньше скорости диффузии). [c.91]

    Большинство почвоведов отрицали возможность вступления этого иона водорода в катионообменпые процессы, считая, что ионный обмен почвы связан исключительно с присутствием в ней соединений алюминия. Таким образом, в качестве поглощающего комплекса почв рассматривались только минеральные составляющие, роль же гуматов совершенно исключалась [23]. Более подробные исследования структуры гулшновых кислот позволили установить, что они представляют собой высокомолекулярные нерастворимые вещества, содержащие карбоксильные группы. Водороды этих групп и вступают в реакцию ионного обмена, причем эффективность этой реакции повышается но мере возрастания pH среды [24-27]. [c.18]

    Первые сообщения об ионообменной адсорбции были сделаны в 1850 г. независимо друг от друга английскими учеными Томпсоном и Уэем. Изучая способность почв к поглощению удобрений и их вымывание дождем, они обнаружили явление обмена ионов между почвой и водными растворами солей. Несмотря на то что поглощение почвой солей (например, получение питьевой воды из морской) было известно уже в древности, серьезные исследования этого явления начались именно с указанных работ. Удовлетворительное объяснение обмена ионов (обратимость процесса, эквивалентность обмена) стало возможным только после открытия закона действия масс (1876 г.). Вещества, проявляющие способность к ионному обмену и используемые для адсорбции ионов, получили название ионообменников или ионитов. [c.164]

    Природными ионитами оргаршческого происхождения являются, например, гумусовые вещества, молекулы которых содержат карбоксильную группу, способную к ионному обмену. Составляющие почву вещества обладают амфотерными свойствами и поэтому могут обменивать как катионы, так и анионы. Природные иониты не нашли широкого технического применения, так как имеют ряд недостатков, в частности, они химически нестойки, не обладают достаточной механической прочностью. [c.165]

    Пептизация может быть вызвана действием как электролитов, так и неэлектролитов, растворенных в жидкости. Растворенное вещество вызывает пептизацию в том случае, если его молекулы или ионы адсорбируются на поверхности данных частиц, образуя вокруг них довольно прочную адсорбционно-сольватную пленку или двойной электрический слой. Например, осадок Ре(ОН)з пептизируется солями трехвалентного железа (в частности, РеС1з), при действии которых потенциалообразующий ион Ре + адсорбируется поверхностью частицы. В некоторых случаях пептизация вызывается заменой ионов диффузного слоя другими ионами с меньшей валентностью. В результате такой замены толщина диффузного слоя увеличивается, -потенциал возрастает, толщина гидратной оболочки вокруг частиц увеличивается, что приводит к разрыву связей между ними. Пептизация такого типа, основанная на ионном обмене, имеет место в почвах. В черноземных почвах коллоидные частицы содержат в диффузном слое преимущественно ионы Са +, что обусловливает небольшую величину -потенциала и слабые силы отталкивания. В этом случае силы притяжения между коллоидными частицами преобладают над силами отталкивания при взаимодействии двойных электрических слоев частиц, что вызывает коагуляцию почвенных коллоидов. Находясь в коагулированном состоянии, почвенные коллоиды не вымываются из верхнего пахотного горизонта, сообщая почве ценные агрономические свойства. [c.342]

    Ионный обмен в почвах. Измерения, проведенные Гедройцем, показали, что величина д характеризует агротехническую ценность почвы. Так, для бедных почв (подзол, суглинки) д составляет всего 0,05—0,2 для каштановых 0,3—0,4 для чернозема — 0,6— 0,8 экв/кг. Однако суш,ественна не только количественная ( ), но и качественная характеристика обменного комплекса. Так, торфяные почвы обладают большой емкостью (0,6—1,0 экв/кг), однако, в отличие от чернозема, где противоионами являются, в основном, ПОНЫ a + и Mg +, торф содержит в обменном комплексе главным образом ион Н+. Этот ион не представляет агрохимической ценности, поскольку растения вырабатывают его сами в процессе жизнедеятельности. [c.177]

    Ионный обмен в почвах. Измерения, проведенные Гедрой-цем, показали, что величина д характеризует агротехническую ценность почвы. Так, для бедных почв (подзол, суглинки) g [c.194]

    Обменная адсорбция имеет большое значение для земледелия, так как от природы поглощенных почвой катионов зависит ее плодородие. Исследуя обмен ионов в почве, К. К. Гейдройц (1933) установил, что процесс происходит в строго эквивалентных соотношениях, т. е. поглощение почвой какого-либо иона сопровождается эквивалентным выделением из нее в раствор другого иона. Например, почва способна поглощать и удерживать [c.279]

    Физ.-хим. Г. п. связаны с растворением, сорбцией, диффузией, ионным обменом, радиоактивным распадом и др. Такие процессы имеют большое практич. значение и наиб, изучены. Прн высоких т-рах и давл. развиваются гипоген-ные (эндогенные) физ.-хим. Г. п., характерные для силикатных расплавов (-магматич. процессы) и термальных вод с т-рой выше 40 °С (гидротермальные процессы). С магматич. процессами связана кристаллизация гранитов, базальтов и др. изверженных пород, для к-рых характерны определ. ассоциации хим. элементов. Очень разнообразны и сложны гидротермальные Г. п., приводящие к образованию месторождений Си, 2п, РЬ, Ag, Ли, Мо, Д и др. При низких т-рах и давл. на земной пов-сти и на небольшой глубине протекают гипергенные (экзогенные) Г. п. К ним относятся мн. явления в почвах, реках, озерах и морях, подземных водах, атмосфере. Эти Г. п. тесно связаны с биогенной миграцией элементов и зависят гл. обр. от окисл.-восст. условий и кислотности вод. В результате гипергенных Г. п. возникли мн. месторождения ре, Мп, А1, Си, Ма, С1 и др. [c.126]

    Важную роль в зевной коре играет ионный обмен, наиб, детально исследованный в почвах и глинах. В гидротермальных условиях к нему способны полевые шпаты, фельдшпатиды, слюды, нек-рые титано- и цирконосили-каты, танталониобаты, сульфиды и др. минералы. [c.521]

    Первые сообщения об ионообменной адсорбции были сделаны в 1850 г. независимо друг от друга английскими учеными Томпсоном и Уэем. Изучая способность почв к поглощению удобрений и их вымыванию дождем, они обнаружили обмен ионами между почвой и водными растворами солей. [c.68]

    Ионы, находящиеся в слое жидкости, непосредственно примыкающем к твердой поверхности, прочно с ней связаны и образуют так называемый плотный слой. Если к раствору добавить какой-нибудь электролит, то происходит обмен ионов (ионный обмен) диффузной части двойного электрического слоя на одноименные ионы добавленного электролита, которые проникают в двойной электрический слой, притягиваясь к заряженной поверхности- Явление И0Н1ЮГ0 обмена было изучено Гедройцем на примере обмена ионов в почвах и им же были установлены основные закономерности ионного обмена —его эквивалентность и зависимость вытеснительной способности ионов от величины заряда и радиуса иона. Чем больше валентность ионов добавленного электролита, тем больше их способность вытеснять из двойного электрического слоя иоиы с меньшей валентностью. Вытеснительная способность иона с одинаковой валентностью возрастает с увеличением его радиуса, потому что ионы-большсго размера лучше поляризуются [c.506]

    В конце 30-х годов было предпринято исследование процесса почвообразования и свойств почв, что явилось продолжензяем работ по изучению механизма коагуляции и ионному обмену в коллоидных системах [c.84]

    Ионный обмен впервые был открыт и изучен около ста лет назад, когда было найдено, что некоторые глинистые минералы почвы могут удалять калиевые и аммонийные соли из воды, причем одновременно в воду переходит эквивалентное количество соответствующей соли кальция. В то время было найдено и изучено много природных ионообменных веществ (ионитов), и большинство из них являются неорганическими. Были разработаны многочисленные способы их практического применения одним из примеров является уменьшение жесткости воды при помощи цеолитов, которые представляют собой силикаты алюминия Ыа2А12514012. [c.587]

    Для количественной обработки результатов кинетических опытов по сорбции и ионному обмену, в том числе на породах н почвах, необходимо определить, в какой кинетической области ленагг процесс. Существует несколько способов определения диффузионного механизма, контролирующего скорость сорбции (понного [c.101]

    Последние десятилетия в развитии отечественной агрохимии внесли много нового в учение 4 питании культур микроэлементами, частичном усвоении растениями органических соединений (начиная с И. С. Шулова, 1913) чрезвычайно важн1 1м явилось открытие синтетической деятельности корней, исследованное преимущественно с помощью меченых атомов, но выявленное еще до этого Д. А. Сабининым (1928) и А. А. Шмуком (1945). Все большее иризнашф находит адсорбционная теория поступления веществ в корневую систеи 1у, базирующаяся на ионном обмене между корневыми волосками и окру>к(ающим их раствором в почве. Значительно усовершенствована методика опытов с растениями и анализа почв для обоснования применения удобрений (в том числе и анализа почв с помощью растений).  [c.15]

    Вполне естественно, что если глинистые минералы способны поглощать и обменивать анионы фоюфорной кислоты в значительном количестве, то и сама почва должна обладать этим свойством. Дикман и Брей предложили вытеснять адсорбционносвязанную почвами фосфорную кислоту 0,03 н. фтористым аммонием, растворенным в 0,1 н. соляной кислоте. Пользуясь этим методом, агрохимики установили, что из вносимых в почвы фосфорных удобрений ее коллоиды адсорбируют из раствора заметное количество фосфат-ионов обменно. Даже после длительного взаимодействия растворимых фос- [c.247]

    Реакции ионного обмена имеют большое значение для почв, где широко распространены гидрослюды типа иллита, которые выполняют функции ионообменников и удерживают калий, жизненно важный для растений. Введение в глины и грунты добавок, способствующих ионному обмену, изменяет их пластичность и улучшает механические свойства, что весьма важно для строительства. Для лучшего затвердевания грунта в него добавляют силикаты щелочных металлов (метод Цебертовича). [c.325]


Смотреть страницы где упоминается термин Ионный обмен в почве: [c.215]    [c.112]    [c.255]    [c.506]    [c.146]    [c.113]    [c.753]    [c.146]    [c.433]    [c.147]   
Коллоидная химия 1982 (1982) -- [ c.206 , c.211 ]

Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Ионный обмен и ионообменная хроматография при анализе природных вод, почв, растений на содержание гербицидных остатков и микроэлементов

Обмен ионов

Равновесие ионного обмена в почвах



© 2025 chem21.info Реклама на сайте