Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адгезия электронно-структурный

    В монографии впервые систематизированы и обобщены результаты исследований дальнодействующих поверхностных сил. Рассматривается их роль в равновесии и устойчивости коллоидных систем и тонких прослоек, в явлениях адгезии, полимолекулярной адсорбции и конденсации, в процессах массопереноса в пористых телах. Излагаются теории ионно-электростатической, молекулярной, структурной, адсорбционной и электронной составляющих расклинивающего давления тонких прослоек. [c.2]


    Существенное влияние природа подложки оказывает не только на структуру различных слоев покрытий, но и на густоту формирующейся пространственной сетки. Из электронных фотографий структуры поверхности полиуретановых покрытий на основе биурета и сложного полиэфира, представляющего сополимер фталевого ангидрида и диметилолпропана [38, 39], полученных на алюминиевой, медной и латунной подложках, видно, что структура состоит из анизодиаметричных элементов, размер которых зависит от природы подложки, возрастая в ряду от алюминия к меди и латуни. Стойкость этих элементов структуры к воздействию растворителя при набухании в ксилоле растет в этом ряду подложек в обратном направлении — от латуни к меди и алюминию. Изучение плотности сшивки полиуретановых пленок на различных подложках свидетельствует, что у покрытий па алюминии она больше, чем на латуни. Адгезия полиуретановых покрытий к алюминию почти в три раза больше, чем к латуни. В покрытиях на основе биурета растворитель разрушает в процессе набухания покрытий вторичные структурные элементы анизодиаметричного типа, первичные структурные элементы — глобулы — остаются неразрушенными. На процесс формирования структуры и густоту пространственной сетки оказывают влияния как природа подложки, так и режим формирования покрытий (табл. 1.1). [c.31]

    Механизм адгезии парафиновых частиц к поверхностям различной природы невозможно понять без рассмотрения хотя бы в общих чертах особенностей кристаллической струиуры и электронной конфигурации твердых веществ, без представления закономерностей, которым подчиняются их свойства с изменением энергетического состояния. Принято считать, что однородное твердое вещество, состав и плотность которого практически одинаковы во всем объеме любых его образцов (т.е. они не отклоняются от средних значений больше, чем на величину ошибки измерения соответствующего параметра), представляет собой твердое химическое соединение /68/. Существенной особенностью твердого соединения является то, что любые его отдельные части - твердые тела - имеют поверхность. Поверхностный слой твердого вещества, толщиной порядка 10А (около 3-4 монослоев соответствующих структурных единиц), из-за неуравновешенного взаимодействия частиц слоя с частицами основной массы имеет несколько иное строение, что приводит к заметному отличию свойств этого JlJ i от глубинного вещества. Твердое вещество в отличие от газа и жидкости, имеет практически не изменяющееся во времени строение. При этом тип строения ве1цества определяется прежде всего тем, какие связи соединяют его структурные единицы - межмолекулярные или межатомные. [c.106]


    При адгезии к металлам парафиновые частицы всегда выступают как акцепторы электронов и образование электрического заряда между поверхностями обеспечивается за счет перетока к ним элекгронов от металла. При этом на отрыв электрона от металла расходуется энергия, равная выходу электрона, а при прилипании электрона к поверхности диэлеюрика выделяется энергия, равная сродству материала диэлектрика к электрону и характеризующая его акцепторные свойства. В обобщенном виде предсказать величину сродства к электрону для всего диэлектрика невозможно, она будет представлять собой совокупность сродства отдельных структурных фрагментов поверхности диэлектрика. Поэтому качественное представление об акцепторных свойствах диэлектрика можно получить тю значениям сродства к элек1рону составляющих его фрагментов. Такие величины представлены в табл.2.7. [c.114]

    Иная структура обнаруживается при формировании полиэфиров на стекле (рис. 1.10,6), отличающимся большей на порядок прочностью взаимодействия с полиэфиром по сравнению с медной фольгой. Повышение адгезии и значительно меньшая скорость протекания релаксационных процессов свидетельствуют о возникновении на границе раздела полимер — подложка в этом случае большего числа центров структурообразования, специфически взаимодействующих с полимером в результате образования водородных связей между карбонильными группами смолы и гидроксильными группами подложки [22]. Это сопровождается возникновением в пограничном слое сетчатой структуры из анизодиамет-ричных структурных элементов (рис. 1.10,6). Такой характер структурообразования в полиэфирных покрытиях обусловлен особенностями строения стекла. С помощью углеродных реплик, оттененных различными металлами, методом электронной микроскопии обнаружена гранулярная структура стекла [23]. Средний размер гранул в зависимости от формы изменяется в пределах 5— 30 нм. В боросиликатных стеклах наряду с этим наблюдаются гранулы удлиненной формы, возникающие путем соединения более мелких образований в структуры размером до 200 нм. При элект-ронно-микроскопическом исследовании пленок стекла, полученных выдуванием в пламени горелки, обнаружены также сферические элементы диаметром 10 нм [24]. Методом срезов, полученных с помощью алмазного ножа [25], обнаружена микрогетерогенная структура боросиликатного стекла. Микрогетерогенности различной формы соответствуют участкам, обогащенным соединениями ВаО, 5102, Ь1гО. Аналогичные неоднородности в структуре стекла были обнаружены методом травления путем выщелачивания водой в течение 17 ч при 35 °С с последующей сушкой [26]. При исследовании структуры стекла с применением метода кислородного травления также обнаружена [4] неоднородная структура с равномерно распределенными по поверхности сферическими частицами (рис. 1.11). Наличие сферических структурных элементов на поверхности стекла способствует формированию таких же структур в поверхностных слоях покрытий, граничащих с подложкой (рис. 1.11,6). [c.24]

    Величина адгезии и внутренних напряжений при формировании полиэфирных покрытий на поверхности подложки, модифицированной соединениями третьего класса, зависит от природы заместителей в фенильном кольце. С ростом электроотрицательности заместителя в ряду (С2Н5)гЫ, Н, СН3О и увеличением расстояния между активными центрами внутренние напряжения понижаются больше, чем адгезия. Для выяснения причины этого явления была исследована структура поверхности подложки и покрытий в пограничном слое. Электронно-микро-скопические исследования структуры подложки проводили с применением кислородного травления образцов. Было установлено, что кремнийорганические соединения не образуют однородного слоя на поверхности стекла, а распределяются в виде глобул диаметром от 10 до 50 нм и их агрегатов. При расстоянии между глобулами, соизмеримом с их диаметром, повышение адгезии не сопровождается значительным изменением внутренних напряжений. С увеличением расстояния между глобулами в 2—3 раза адгезия понижается значительно меньше, чем внутренние напряжения, оставаясь всегда больше адгезии к поверхности немодифицированной подложки. В присутствии модификаторов первого класса в пограничных слоях покрытий формируется структура глобулярного типа. При модифицировании поверхности подложки соединениями третьего класса морфология надмолекулярной структуры покрытий зависит от природы заместителя в фенильном кольце. Значительное увеличение адгезии покрытий на модифицированной подложке при неизменной величине внутренних напряжений по сравнению с покрытиями на немодифицированной подложке наблюдается в присутствии модификаторов, способствующих формированию сетчатой структуры из анизодиаметричных структурных элемен- [c.70]


    Для выяснения причины различного влияния ПАВ на свойства системы исследовали структуру и физико-механические свойства подложки — резины методом электронной микроскопии путем снятия углеродно-платиновых реплик с поверхности скола образца, подвергнутого предварительно кислородному травлению. Оказалось, что действие исследованных ПАВ на структуру различно. В присутствии ПАВ-1 наблюдается глобулярная структура во всем диапазоне концентраций ПАВ, но размер глобул с ростом концентрации ПАВ монотонно уменьшается от 70 до 20 нм. Иной характер структурообразования отмечен в присутствии ПАВ-2. При введении уже 0,2% ПАВ размер глобул уменьшается на порядок. При дальнейшем увеличении концентрации ПАВ глобулы диспергируются до молекул с последующим образованием из них структур сетчатого типа. Изучение физико-механических и релаксационных свойств резины в присутствии ПАВ различного строения выявило корреляцию их с характером структурных превращений в подложке и с изменением внутренних напряжений в зависимости от концентрации ПАВ. Сопоставляя картину структурных превращений с наблюдаемыми концентрационными зависимостями адгезии и внутренних напряжений, можно следующим образом объяснить влияние ПАВ на свойства системы покрытие — подложка (рис. 3.9) При введении в резину исследованные ПАВ ведут себя как дис-пергаторы, причем активность ПАВ определяется строением ею углеводородного радикала. Благодаря линейному цепному строению ПАВ-2 на структуру резины оказывает более сильное диспергирующее действие, чем ПАВ-1, радикал которого короче [c.85]

    В результате для молекул эпоксиметакрилового эфира предпочтительной является развернутая конформация, что приводит к формированию в жидкой фазе ассоциатов анизодиаметричного типа. Этот ассоциативный порядок сохраняется и при формировании покрытий цод действием ультрафиолетового излучения. При изучении надмолекулярной структуры покрытий на различных этапах отверждения методом электронной микроскопии было установлено, что через 2 мин облучения в покрытиях из эпоксиметакриловых эфиров на металле возникает неоднородная структура наряду с глобулами диаметром 10 нм формируются более крупные структуры анизодиаметричного типа. Вместе с тем наблюдаются отдельные участки, структура которых не выявляется. При облучении в течение 3 мин обнаруживается однородная сетчатая структура из плотно упакованных структурных элементов анизодиаметричной морфологии. Увеличение продолжительности процесса отверждения приводит к разрушению анизодиаметричных структур. Более медленно процессы структурообразования протекают при формировании покрытий на стеклянной подложке, отличающейся меньшей адгезией к эпоксиметакриловым олигомерам. После 2 мин облучения структура покрытий в этих условиях формирования выявляется нечетко видны лишь отдельные надмолекулярные образования диаметром около 5 нм. После 3 мин формирования обнаруживается неоднородная структура из глобул диаметром около 15— 20 нм и их агрегатов. Последующее увеличение продолжительности облучения приводит к разрушению структуры. [c.190]


Смотреть страницы где упоминается термин Адгезия электронно-структурный: [c.98]    [c.183]    [c.188]    [c.223]   
Температуроустойчивые неорганические покрытия (1976) -- [ c.191 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезия



© 2025 chem21.info Реклама на сайте