Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниобий фосфора

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]


    Извлечение пирохлора и апатита и, следовательно, ниобия фосфора в концентрат зависит от верхнего предела крупности о деляемой иловой суспензии. [c.124]

    Нами было исследовано взаимодействие хлорного железа с медью, алюминием, титаном, цирконием, углеродом, кремнием, ванадием, ниобием, фосфором, хромом, молибденом, вольфрамом, марганцем, кобальтом и никелем, а также с рядом сплавов на основе железа, содержащих эти элементы. [c.96]

    К подгруппе ванадия относятся элементы побочной подгруппы пятой группы ванадий, ниобий и тантал. Имея в наружном электронном слое атома два или один электрон, эти элементы отличаются от элементов главной подгруппы (азота, фосфора и др.) преобладанием металлических свойств и отсутствием водородных соединений. Но производные элементов обеих подгрупп в высшей степени окисленности имеют значительное сходство. [c.651]

    Легированные стали маркируют буквами и цифрами. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры — легирующие элементы А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ю — алюминий. Цифры после букв указывают ориентировочное содержание легирующего элемента в целых процентах отсутствие цифры свидетельствует о том, что элемент присутствует в количестве не более 1,5%. [c.328]

    Хлор обладает высокой химической активностью. В значительных количествах он используется для приготовления отбеливателей (гипохлорита кальция и хлорной извести). Сжиганием хлора в атмосфере водорода получают чистый хлористый водород. Соответствующие хлориды используются в производстве титана, ниобия и кремния. Промышленное применение находят также хлориды фосфора, же,пеза и алюминия. [c.132]

    Существенным недостатком обычного варианта периодической системы являлось то обстоятельство, что в нем не была выявлена связь между типическими элементами каждой группы и членами ее левой и правой подгрупп. Так, из системы вытекало, что, например, в V группе сурьма является аналогом мышьяка, ниобий — аналогом ванадия и фосфор — аналогом азота. Оставалось, однако, неясным, в каком отношении к фосфору стоят ванадий и мышьяк. [c.222]

    Из комплексов с неорганическими лигандами большое значение имеют гетерополикислоты, которые широко применяют для определения фосфора, кремния, мышьяка, ниобия и других ионов. Глубокие исследования этих комплексов проведены академиками [c.237]


    Стандартных и обш,епринятых кондиций на концентраты ниобия и тантала нет. Можно указать лишь на технические условия ограниченного назначения или сослаться на производственную практику. Концентраты, применяемые для непосредственного получения ферросплавов (феррониобия, ферро-тантало-ниобия), должны содержать минимальное количество Р, 5, С, 51, Т1. Наиболее вредны Р, 5, С. Повышенное содержание примесей фосфора и углерода придает стали, для легирования которой используются ферросплавы, хрупкость повышенное содержание серы вызывает красноломкость. Кроме того, сера ухудшает коррозионную стойкость нержавею-Ш.ИХ сталей. Состав некоторых концентратов приведен в табл. [c.65]

    Фтористый водород в принципе является универсальным фторирующим агентом, поскольку очень многие элементы реагируют с ним. Однако примененпе фтористого водорода в лабораторных условиях для окислительного фторирования несколько ограниченно. Большинство реакций гидрофторирования, в результате которых образуются летучие фториды, дают небольшой выход (например, при гидрофторировании фосфора и мышьяка) или же затруднено дальнейшее разделение продуктов реакций. Характерное исключение представляет собой получение пентафторида ниобия [151], пентафторида тантала [151] и дифторида германия [152, 153]. [c.335]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др.При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции [c.731]

    В чугунах и сталях определяют углерод (графит), марганец, никель, кобальт, медь, хром, алюминий, кремний, фосфор, серу и мышьяк, а также редкие металлы — титан, ванадий, молибден, вольфрам, цирконий, ниобий, тантал и др. [c.129]

    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]


    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Пятая группа состоит из типических элементов (азот, фосфор), элементов подгруппьс мышьяка (мышьяк, сурьма, висмут) и подгруппы ванадия (ванадий, ниобий, тантал). [c.389]

    Металлический кальций применяют в металлургии, используя метод кальцнйтер-мни для получения чистых бериллия, ванадия, циркония, ниобия, тантала и других тугоплавких металлов, а также вводя его в сплавы меди, никеля и специальные стали для связывания примесей серы, фосфора, углерода. Его применяют также для очистки благородных газов от кислорода н аз га, с которыми кальций энергично взаимодействует. Кальций и барий используют как вещества (геттеры), служащие для поглощения газов и создания глубокого вакуума в алектронных приборах. [c.299]

    Ванадий и его аналоги при повышенных температурах активно реагируют с фосфором, мышьяком и сурьмой. Все три металла, взаимодействуя с фосфором, образуют соединения двух типов монофосфиды ЭР и дифосфиды ЭР2, причем первые обладают металлическими свойствами, а вторые являются полупроводниками. Все известные арсениды и стибиды проявляют металлидный характер независимо 01 их состава. В еще большей мере это свойственно промежуточным фазам, образующимся при взаимодействии ванадия, ниобия и тантала с 5/ -элементами IV группы — 81, Се, 8п. [c.308]

    Все галогены окисляют (при нагревании) ниобий и тантал до пента-галидов ЭГа, но для ванадия известен только пентафторид УРб. Водород связывается этими металлами непрерывно (нестехиометрически), причем получаются твердые растворы гидридов с металлами. С азотом (при 1000° С) ванадий, ниобий и тантал образуют нитриды переменного состава (3N, ЭгЫ и др.). С углеродом они взаимодействуют в расплавленном состоянии получающиеся карбиды также имеют переменный состав (ЭзС, ЭС ит. п.). Кроме того, металлы УВ-подгруппы (особенно в порошкообразном состоянии) взаимодействуют с серой, фосфором, бором и кремнием. [c.413]

    Осаждение купфероном в сильнокислом растворе дает возможность отделить железо, ванадий, цирконий, титан, олово, ниобий, тантал от алюминия, бора, бериллия, фосфора, марганца, никеля и урана. Куп-феронаты осаждают при охлаждении, чтобы предупредить разложение купферона. Промывают купферо-наты холодным раствором серной или хлороводородной кислоты с небольшим количеством купферона. Гравиметрической формой являются оксиды металлов. [c.207]

    Ниобий и тантал ири нагревании могут образовывать-иентагалогениды SHals со всеми галогенами, а ванадий— только VFs. С хлором он образует УСЬ, УС з н УСЦ. Эти металлы связывают водород (выделяется теплота) и удерживают его в значительном количестве даже при повышенной температуре. При 1000° С н выше в-атмосфере азота образуют нитриды ЭгМ и 3N, а с углеродом в расплавленном состоянии — карбиды ЭС и ЭгС. Прн взаимодействии с СО и СОг также образуют карбиды. Обычно карбиды и нитриды являются фазами переменного состава. При нагревании, особенно порошкообразных металлов, они реагиру]от с серой и фосфором,, кремнием и бором. [c.415]

    Стойкость нержавеющих стапей в азотной кислоте определяется не только их Химическим составом, но и металлургическими и технологическими факторами. Дпя повышения коррозионной стойкости стапей спедует стремиться к возможно более низкому содержанию углерода (не более 0,03%, а лучше - 0,02%), кремния (не бопее 0,40%), фосфора и серы (способствует селективной коррозии). Введение в качестве легирующих элементов стабилизаторов (титана и ниобия) не всегда оправдано, поскольку из- за образования карбидов и карбонитридов, легко растворяющихся под воздействием азотной кислоты, стойкость сталей может резко снижаться. Благоприятно влияют на стойкость стапей в азот-8626 КЗК 45 6 21 [c.21]

    При маркировке легированной стали легирующие элементы обозначают следующими буквами X —хром. И —никель, М —молибден, Т —титан, Д —медь. С —кремний, Б — ниобий, А—азот, Г — марганеи, Ю — алюминий, В — вольфрам, Ф — ванадий, К — кобальт, П — фосфор, Ц — цирконий, Р — бор. Цифры, стоящие после буквы, обозначающей легирующий элемент, указывают среднее содержание (в процентах) этого элемента в сплаве, а стоящие перед первой буквой — содержание (в десятых долях процента) углерода. [c.321]

    При оиределении редких элементов (тантала, ниобия, вольфрама и др.) в материалах сложного химического состава, наиример в сырье, часто требуются длительные и сложные операции отделения определяемого элемента от сопутствующих. В этом случае следует учитывать не только длительность и трудоемкость, но и недостаточную надежность гравиметрического анализа. При нахождении суммарного содержания тантала и ниобия в некоторых концентратах необходимо вводить поиравку на соосадив-шийся фосфор, для чего заранее определяют его содержание. Однако нахождение содержания фосфора в этих концентратах является весьма сложной задачей, решение которой не всегда приводит к надежным результатам. [c.27]

    Один из наиболее старых гравиметрических методов определения содержания титана основан на осаждении его аммиаком в виде гидроксида с последующим прокаливанием выделенного осадка до оксида титана Т102. В данном случае определению мешают элементы, осаждаемые аммиаком (например, железо, цирконий, ниобий, тантал и др.), а также фосфор, ванадий, мышьяк. [c.126]


Смотреть страницы где упоминается термин Ниобий фосфора: [c.125]    [c.486]    [c.303]    [c.334]    [c.58]    [c.428]    [c.46]    [c.17]    [c.479]    [c.214]    [c.346]    [c.1578]    [c.174]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.108 ]




ПОИСК







© 2024 chem21.info Реклама на сайте