Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное натяжение статические

    В связи с тем что а зависит от условий измерения, различают статическое и динамическое поверхностное натяжение. Статическое поверхностное натяжение измеряют в условиях длительного существования адсорбирующей поверхности, когда адсорбционный слой находится в равновесном (статическом) состоянии. Эту величину измеряют методами капиллярного поднятия, висячей капли, лежащей капли. Динамическое поверхностное натяжение измеряют при быстром образовании поверхности, так что адсорбция на ней не достигает равновесного значения. Величина [c.108]


    Методы определения поверхностного натяжения жидкостей обычно делят на статические и динамические [1, 6, 7, 15—17, 109]. Измерение поверхностного натяжения статическими методами проводят при неподвижных или медленно образующихся поверхностях раздела, а динамическими — при движущихся и непрерывно обновляющихся поверхностях. К группе статических методов относят метод неподвижной капли и метод капиллярного поднятия. К этой же группе можно отнести метод измерения наибольшего давления в пузырьках (каплях), метод отрыва кольца, метод Вильгельми и метод взвешивания (счета) капель. К динамическим относят следующие методы капиллярных волн, колеблющихся струй, вращающейся капли. [c.73]

    Поэтому различают поверхностное натяжение статическое, отвечающее состоянию равновесия, и динамическое, полученное в некоторый момент времени, когда система не пришла еще в состояние равновесия  [c.113]

    Поверхностное натяжение статическое и динамическое 3 [c.363]

    Различают поверхностное натяжение статическое и динамическое. Первое представляет собой натяжение при установившемся адсорбционном равновесии на границе раздела жидкость — воздух или жидкость — жидкость, а второе — при таком малом времени после образования поверхности, при котором не успевает установиться адсорбционное равновесие. Для завершения физико-химического процесса адсорбции требуется определенное время, иногда довольно длительное [38—40]. [c.25]

    Опыты проводились на одиночном колпачке при изменении параметров скоростей газа и жидкости, высоты сливной перегородки, размеров прорезей, высоты статического затвора, вязкости и поверхностного натяжения жидкостей. [c.334]

    Наиболее доступными для экспериментального измерения поверхностного натяжения являются системы жидкость — газ и жидкость — л<идкость. Существующие методы дают возможность измерять о при неподвижной межфазной поверхности (статические) и при движущейся поверхности раздела (динамические). Недостатком динамических методов является сложность их аппаратурного оформления. Кроме того, для надежного измерения поверхностного натяжения растворов, и, в частности, растворов ПАВ, необходимо их выдерживать определенное время для установления равновесия в поверхностном слое. [c.11]

    Метод, позволяющий определить поверхностное натяжение битумов при пониженных температурах, заключается в расчете" сил в статически висячей капле. Когда капля находится в равновесии, вертикальные силы, действующие поперек горизонтальной плоскости, соответственно уравновешены  [c.57]

    Образование пленок мен<ду масляными каплями показывает, что действие поверхностных сил, препятствующих слиянию капель, для параллельного слоя жидкости никогда не может возникнуть просто из гидродинамических сил и инвариантного поверхностного натяжения. По аналогии с подобной системой газ — жидкость, для которой имеются более полные данные, можно уверенно предположить, что следует различать два типа жидких пленок, соответствующих неустойчивой и стойкой пенам (Китченер и Купер, 1959). Неустойчивая пленка — это такая, в которой поверхностные силы достаточны, чтобы образовать толстую пленку в динамическом состоянии, но она не способна выдержать равновесное давление в статическом состоянии. [c.79]


    Один из наиболее широко используемых статических методов заключается в определении веса или объема капли, которая медленно отрывается от кончика вертикально расположенного капилляра. При этом, если определяется поверхностное натяжение жидкости, капля падает в воздух, при измерении межфазного натяжения— в жидкость, представляющую другую фазу. [c.168]

    В динамических методах, когда работают с новообразованными поверхностями, равновесие не всегда успевает установиться. По этой причине динамические методы, которые во многих случаях быстрее и удобнее статических, не всегда дают равновесные значения поверхностного натяжения. Иногда измерение динамических неравновесных значений поверхностного натяжения представляет самостоятельный интерес, в частности при исследовании кинетики адсорбции. [c.116]

    Существующие методы определения поверхностного натяжения делятся на три группы статические, полустатические и динамические. [c.20]

    Пол у статическими называются методы определения поверхностного натяжения границы раздела фаз, возникающей и периодически обновляемой в процессе измерения (метод максимального давления пузырька и сталагмометрический метод), а также методы отрыва кольца и втягивания пластины. Эти методы позволяют определить равновесное значение поверхностного натяжения, если измерения проводятся в таких условиях, что время, в течение которого происходит формирование поверхности раздела, значительно больше времени установления равновесия в системе. [c.21]

    Поверхностное натяжение свежеобразованной поверхности чистых жидкостей или истинных растворов обычных низкомолекулярных веществ принимает равновесное значение практически мгновенно. В случае мицеллообразующих ПАВ (и высокомолекулярных соединений) наблюдается медленное снижение поверхностного натяжения во времени, причем для достижения равновесного значения сг может требоваться от нескольких часов до нескольких суток. Это явление известно как старение адсорбционных слоев. Типичные кривые кинетики поверхностного натяжения (для растворов додецилсульфата натрия) представлены на рис. 5 [6, с. 27]. Рисунок показывает, что поверхностное натяжение растворов различной концентрации медленно снижается во времени, достигая равновесного (статического) значения че- [c.30]

    При г = оо От =о, т. е. поверхностное натяжение достигает равновесного (статического) значения. [c.34]

    Б. Полустатические методы основаны на рассмотрении условий равновесия между приложенной внешней силой, увеличивающей поверхность раздела, и противостоящей ей силой поверхностного натяжения (метод наибольшего давления газовых пузырьков или капель, метод отрыва кольца или рамки, метод взвешивания или счета капель). В ходе измерения а поверхность раздела непрерывно увеличивается с регулируемой скоростью, пока приложенная сила (например, сила отрыва кольца) не превысит действия поверхностного натяжения, стремящегося сократить поверхность. Поскольку формирование адсорбционного слоя протекает во времени, в случае мицеллообразующих (и особенно высокомолекулярных) ПАВ измеряемое значение а зависит от скорости образования новой поверхности. Чем медленнее производится образование поверхности (отрыв кольца, образование. капли), тем меньше, т. е. ближе к равновесной наименьшей величине, найденное значение а. При бесконечно медленной скорости образования поверхности методы дают равновесное (статическое) значение а. [c.88]

    По полученным данным строят график зависимости поверхностного натяжения от времени. Находят наименьшее значение поверхностного натяжения, принимая его за равновесное (статическое). [c.122]

    Величина р"—р ) в случае сферической поверхности называется поверхностным давлением или давлением Лапласа. Уравнения (ХИ1.98) и (ХП1.99) показывают, что разность статических давлений в смежных фазах равна произведению межфазного поверхностного натяжения на кривизну поверхности. Очевидно, для плоской поверхности [c.345]

    Для измерения поверхностного натяжения индивидуальных жидкостей пригодны все методы, поскольку между результатами, полученными статическими и динамическими способами, нет заметной разницы. У растворов же результаты измерений о разными методами могут сильно отличаться из-за медленного установления равновесного распределения растворенных веществ между свеже-образованной поверхностью и объемом раствора. Это в особенности относится к растворам мицеллообразующих и высокомолекулярных ПАВ (белковые вещества, сапонины, высшие гомологи мыл). Получение в таких растворах равновесных значений поверхностного натяжения требует применения статических методов. Пригодны и некоторые из полустатических методов, например методы отрыва кольца, счета капель, наибольшего давления пузырьков и др. При простоте и удобстве работы эти методы дают вполне удовлетворительные результаты, если измерения проводят таким образом, что время формирования новой поверхности в виде капли является достаточным для установления концентрационного равновесия. В растворах низкомолекулярных ПАВ равновесные значения а обычно достигаются менее чем за минуту для растворов ПАВ более сложной структуры на установление равновесия может потребоваться до нескольких десятков минут в связи с медленной диффузией их молекул. Таким образом, для правильного выбора метода исследования необходимо учитывать кинетику установления равновесных, т. е. наименьших, значений поверхностного натяжения. [c.311]


    Подобные методы определения поверхностного натяжения, называемые методами капиллярного поднятия, относятся к статическим и основываются на том, что молекулярное сцепление связано с формой и явлениями, наблюдаемыми на поверхности раздела фаз. [c.177]

    Методы измерения поверхностного натяжения жидкостей делят на статические, полустатические и динамические. [c.37]

    Статические методы основаны на изучении устойчивого равновесного состояния, к которому самопроизвольно приходит изучаемая система это позволяет получать истинно равновесные значения поверхностного натяжения, что особенно важно при изучении растворов, для которых требуется время, иногда длительное, для установления равновесного состояния поверхностных слоев (см. с. 67), К числу статических относятся методы капиллярного поднятия, лежан ей и висящей капли (пузырька), вращающейся капли, уравновешивания пластинки и др. [c.37]

    Полустатические методы определения поверхностного натяжения, как и статические, основаны на достижении системой некоторого равновесного состояния, но для полустатических методов это равновесие неустойчиво. Определение поверхностного натяжения основано здесь на изучении условий, при которых система теряет свое равновесие. [c.38]

    В работах Пчелина и Кульмана [89—91] показана роль электростатических взаимодействий и pH среды в формировании адсорбционных слоев желатины, обнаруженная при исследовании поверхностного натяжения статическим методом. Полученные результаты для желатины (с = 0,5 г/100 мл) при 40 °С на границе с воздухом показали, что при формировании адсорбционных слоев в отсутствие соли электростатические взаимодействия приводят к замедленному образованию слоя. Однако конечные величины поверхностного натяжения в кислой области pH не зависят от заряда макромолекул. Отсутствие вклада в поверхностную активность желатины полярных остатков при подавлении их ионизации, а также неизменность поверхностного натяжения, характеризующего адсорбционные слои желатины в статических условиях десорбции при изменении pH, не может объясняться с классических позиций изменением поверхностной активности и ионизацией полярных групп. Авторы предположили, что аналогично известному аффекту мутаротации поли-/ -пролина в кислой области pH имеет место протонизация имидных связей в молекулах желатины. При этом снижается заторможенность вращения вокруг таких связей и повышается общая гибкость цепи, что способствует дифференциации сегментов по полярности и обусловливает существенно ббльшую поверхностную активность но сравнению со щелочной областью pH, где цени более жесткие. [c.179]

    Растворенные газы (даже углеводороды) понижают поверхностное натяжение нефти [131 —132], но эффект менее значителен, и изменения, возможно, обусловлены наличием молекул растворенного газа. Этот факт имеет большое значение для промышленности, где вязкость и поверхностное натяжение жидкости могут влиять на количество нефти, извлеченной при определенных условиях. Большая часть того, что было сказано, относится к межфазному (граничному) натяжению [133—134]. В системе нефть — вода pH водной фазы окажет влияние на межфазное натяжение это изменение не велико для нефтепродуктов с высокой степенью очистки, но увеличение pH, наблюдающееся в случае плохо очищенных или слегка окисленных нефтей, вызовет быстрое уменьшение меж-фазного натяжения [134—135]. Изменение поверхностного натяжения на границе раздела нефть — щелочная вода было предложено как метод контроля для последующей очистки или окисления таких продуктов, как, например, турбинные и изоляторные масла [136—138]. В тех случаях, когда поверхностное или межфазное натяжение понижается присутствием растворенных веществ, которые имеют тенденцию образовывать поверхностную пленку, требуется некоторое время, чтобы получить конечную концентрацию и, следовательно, — конечное значение натяжения. В таких системах необходимо различать динамическое и статическое натяжения первое относится к неокисленной поверхности, имеющей [c.183]

    Отметив, что данные Шулмэна и др. относятся к полной задержке, т. е. ко всей жидкости, находящейся в насадке, автор не указывает, что формула Баченэна обобщает результаты, относящиеся лишь к динамической задержке, т. е. той части жидкости, которая находится в движении и, в частности, быстро стекает из колонны по прекращении ее орошения. Именно эта составляющая количества задерживаемой жидкости не зависит от поверхностного натяжения, в то время как полная задержка, согласно Шулмэну и др., зависит от него в заметной степени вследствие существенности влияния поверхностного натяжения на статическую задержку, соответствующую той части жидкости, которая остается в насадке по прекращении орошения. Примеч. пер. [c.224]

    Помимо указанных двух причин появления градиента поверхностного натяжения разности концентраций и разности температур, градиент поверхностного натяжения может возникнуть также за счет так называемой поверхностной эластичности . Поверхностная эластичность — результат разности в поверхностном натяжении между увеличенной поверхностью и статической. Вещества, которые понижают поверхьюстное натяжение, находятся у поверхности в максимальной концентрации. Если поверхность увеличивается, концентрация этих веществ моментально уменьшается, в результате повышается поверхностное натяжение. Это изменение зависит от того, как быстро увеличивается поверхность и скорость диффузии материала к поверхности. Результирующим эффектом является стабилизация пленок и отсутствие коалесценции, благодаря возникновению сил, действующих в обратном направлении силам механического разрушения, стремящимся растянуть, уменьшить толщину пленки и разрушить ее. Поверхностная эластичность будет наиболее заметна тогда, когда один из компонентов смеси обладает высокой поверхностной активностью . [c.147]

    Гидравлическое сопротивление газожидкостного слоя АРсл- Усю-кин и Аксельрод [348], в свою очередь, разделили на две составляющих — статическое сопротивление обусловленное давлением находящейся на решетке жидкости, и сопротивление АРа, обусловленное действием сил поверхностного натяжения. В дальнейшем эти представления привели [9, 113, 287] к созданию методов расчета ситчатых тарелок барботажных колонн. [c.62]

    На практике наиболее часто используют статические или полуста-тические методы, позволяющие измерять равновесные значения поверхностного натяжения жидкостей. К статическим относятся методы капиллярного поднятия жидкости и висячей (лежащей) капли. Полу-статическими являются методы максимального давления в капле (пузырьке), отрыва кольца или пластины и сталагмометрический метод. [c.11]

    Стремление характеризовать свойства чистых жидкостей и растворов поверхностно-активных веществ их поверхностным натяжением вызвано тем, что эта величина поддается сравнительно простому и точному измерению. Многочисленные методы излтерения поверхностного натяжения можно разделить на две группы — статические и динамические. В статических методах измерения производят с неподвижной жидкостью по отношению к поверхности, которая была образована еще до измерения. В этих условиях можно полагать, что равновесие между растворенными веществами (когда измеряется поверхностное натяжение растворов) в объеме и на поверхности установилось. Типичным статическим методом измерения поверхностного натяжения является метод капиллярного поднятия. [c.116]

    Определение поверхностного натяжения по форме капли или пузырька. Жидкая капля или газовый пузырек в жидкости частично деформируются гравитационными силами. Так как сферическая форма обусловлена поверхностным натяжением, то чем оно меньше, тем больше будет деформация. Действие сил тяжести, вызывающее деформацию, усиливается с увеличением размеров капли (или пузырька) и с возрастанием разницы в плотностях капли (или пузырька) и окружающей среды. Зависимость равновесной формы, которая определяется из условия минимума свободной энергии, от поверхностного натяжения можно использовать как метод его измерения. Подобные методы являются строго статическими и, несмотря на большие экспериментальные трудности, получили распространение, в частности, при измерении зависимости поверхностного натяжения растворов поверхностно-активных веществ от времени (Наттинг и Лонг, 1941 г.). В 1961 г. Смолдерс успешно применил анализ формы капли и пузырьков для прецизионного изучения явления смачивания. [c.121]

    Статическими методами определяется поверхностное натяжение практически неподвижных поверхностей, образованных задолго до начала измерений и поэтому находящихся в равновесии с объемом жидкости. К этим методам относится метод капиллярного поднятия и метод лежащей или висящей капли (пу-зыр1.ка). [c.21]

    Изменение поверхностного натяжения во времени, отражающее процесс формирования адсорбционного слоя на поверхности растворов ПАВ, можно изучать полустатичес-кими методами максимального давления в пузырьках, отрыва кольца и сталагмометрически. Для этого измеряют сг при различной скорости увеличения поверхности раздела, т. е. изменяя время образования пузырька или капли, время отрыва кольца, что етрудно осуществить экспериментально. В таком случае обнаруживается, что измеряемое значение а уменьшается по мере снижения скорости образования поверхности, стремясь к наименьшему равновесному (статическому) значению. Однако более удобными для указанной цели являются статические методы капиллярного поднятия и пластинки Вильгельми, при которых площадь поверхности раздела в ходе измерения остается постоянной. В случае метода втягивания пластинки применение электровесов, снабженных самописцем, позволяет осуществить непрерывную запись кривой кинетики поверхностного натяжения. [c.120]

    Для создания свежей поверхности раздела выдавливают из капилляра 1—2 капли раствора, осторожно повышая давление воздуха в левом колене прибора через отводную трубку с помощью груши. Когда менирк вернется в левую вертикальную часть капилляра, пускают секундомер и начинают наблюдение за снижением уровня в капилляре, периодически замеряя положение дна мениска с помощью катетометра (описание катетометра и методика работы с ним даны на с. 92—94). Промежутки времени между замерами в начале опыта должны составлять 2—3 мин затем, по мере уменьшения скорости смещения уровня, замеры делают реже. Измерения следует проводить до тех пор, пока смешение мениска не прекратится практически полностью, что достигается в течение 2—4 ч. К этому времени скорость уменьшения высоты капиллярного поднятия становится настолько незначительной, что можно пользоваться достигнутыми значениями а как статическими. Закончив наблюдения за кинетикой поверхностного натяжения, делают отсчет положения мениска плоской поверхности в широкой части прибора. [c.121]

    Поверхностное натяжение жидкостей легко определяют прямым экспериментальным путем. Описанные в литературе многочисленные методы измерения поверхностного натяжения на жидких (подвижных) поверхностях раздела подразделяют на три основные группы 1) статические (методы капиллярного по,анятия и лежачей или висячей капли) 2) полустатические [методы максимального давления пузырька (капли), отрыва кольца, отрыва пластинки, взвешивания или счета капель] 3) динамические (методы капиллярных волн, колеблющихся струй). [c.310]

    Метод ,г измерения поверхностного натяжения подразделяются на статические или нолустатические (при неподвижных или медленно образующихся поверхностях раздела) и динамические (при движущихся и непрерывно обновляющихся поверхностях раздела). [c.66]

    Несколько особняком среди других статических методов определения поверхностного натяжения находится очень удобный и точный метод уравновещивания пластинки (метод Вильгельм и). В этом методе закрепленную на коромысле весов тонкую пластинку шириной как правило, хорошо смачиваемую исследуемой жидкостью, погружают в жидкость. На поверхности пластинки с обеих ее сторон образуются мениски (рис. 1—17). Форма их поверхности и максимальная высота поднятия жидкости определяются уравнением Лапласа суммарный же вес поднятой жидкости, приходящийся на единицу периметра пластинки, не зависит от формы мениска и при нулевом краевом угле смачивания равен поверхностному натяжению о. Поэтому сила Р, которую необходимо приложить для уравновещивания пластинки, равна произведению поверхностного натяжения жидкости на удвоенную ширину пластинки, соответственно поверхностное натяжение определяется из условия а=Р/2с1 (при достаточно малой толщине пластинки). Этот метод в принципе не требует учета каких-либо поправок на форму мениска. [c.38]

    С помощью эллиптического отверстия образуют струю в форме эллиптического цилиндра под действием сил поверхностного натяжения, стремящихся придать струе форму цилиндра с круговым сечением, и инерционных сил устанавливаются поперечные колебания струи— большая и малая оси эллипса поочередно меняются местами. Теория, развитая Рэлеем, а затем Бором и Сатерлендом, позволяет связать длину волны на поверхности струи, определяемую экспериментально оптическими методами, с поверхностным натяжением жидкости. Сопоставление полученных таким образом значений поверхностного натяжения с результатами определения их статическими или полустати-ческими методами позволяет сделать выводы о скорости установления равновесной структуры поверхностных слоев, кинетике адсорбции и т. д. [c.41]


Смотреть страницы где упоминается термин Поверхностное натяжение статические: [c.42]    [c.42]    [c.17]    [c.696]    [c.703]    [c.100]    [c.314]    [c.20]    [c.25]    [c.255]    [c.7]    [c.78]    [c.67]   
Коллоидная химия 1982 (1982) -- [ c.37 ]

Коллоидная химия (1960) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностное статическое

Статические методы измерения поверхностного натяжения

Статические методы определения поверхностного, натяжения



© 2025 chem21.info Реклама на сайте