Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические силы

    При исследовании межмолекулярных взаимодействий необходимо учитывать расклинивающее давление, направленное под прямым углом к плоскости жидкой пленки и предложенное Б. В. Дерягиным [214], и структурно-механические силы, определяющие в соответствии с теорией П. А. Ребиндера упру- [c.204]

    Нагревание всякого тела усиливает в нем молекулярное движение. Как описано в разд. 15-1, Лавуазье и Дальтон считали теплоту флюидом, который может быть извлечен из атомов в результате трения. Вопреки такой неправильной точке зрения теплота характеризует состояние движения молекул и атомов, которое ускоряется механическими силами трения, К таким выводам привели эксперименты, продемонстрировавшие эквивалентность механической работы и теплоты эти выводы получили дальнейшее подтверждение в кинетической теории газов, а впоследствии были распространены на молекулярную теорию жидкостей и твердых тел. [c.53]


    Желание дать общий пример расчета, основанного на кинетических закономерностях массо- и теплообмена, определило выбор высушиваемого материала, с которым влага связана механическими силами. Процесс в этом случае протекает в первом периоде сушки при постоянной температуре влажного материала, равной температуре мокрого термометра, и скорость сушки определяется внешней диффузией. [c.162]

    М — вращающий момент и — угловая скорость /д — производительность яасоса К сила давления на лопасть Л-д - коэффициент пропорциональности <( —диаметр лопасти Ь — высота лопасти Р—давление О — расход вещества 8 — поперечное сечение поршня — скорость д — сила тока ид — напряжение 1, Р — механические силы 1, V) — скорость перемещения [c.43]

    Твердые вещества в данных условиях тоже могут находиться в состояниях, обладающих различной термодинамической устойчивостью, например, в различных кристаллических формах. В свою очередь для любой из этих форм более устойчивым является состояние, соответствующее идеально правильному кристаллу. Дефекты структуры, вызванные условиями образования кристалла или последующей деформацией под действием внешних механических сил, в какой-то степени уменьшают его устойчивость, так как образование этих деформаций связано с затратой энергии и сопровождается возрастанием энтропии. Точно так же кристаллическое тело в измельченном состоянии, т. е. обладающее большей поверхностью, менее устойчиво. Во всех подобных случаях уменьшение устойчивости сопровождается возрастанием изобарного потенциала. В таких состояниях вещество обладает большей химической активностью и меньшей химической стойкостью, большей способностью к фазовым переходам (большим давлением насыщенного пара, большей растворимостью и т. д..) Выделение вещества в более активных формах и состояниях может происходить самопроизвольно только из состояний с еще большим изобарным потенциалом (еще более активных в данных условиях). Обычно такими состояниями служат сильно пересыщенный раствор или переохлажденная жидкость. Кроме того, такое вещество может получаться при химической реакции, происходящей в условиях, достаточно далеких от равновесных. [c.227]

    В стеклообразном состоянии полимер является упруго-твердым веществом и его деформируемость при действии внешних механических сил очень невелика, в особенности при температурах, не слишком близких к температуре стеклования (рис. 200). В области температуры стеклования происходит сильное увеличение дефор- [c.572]


    Графит представляет собой слоистую структуру, в которой плоскости образованы конденсированными бензольными кольцами (длина связи С—С 0,145 нм) и расположены одна от другой на расстояниях 0,341 нм. Последние связи непрочны и это определяет легкое скольжение слоев друг относительно друга под действием механической силы. Структура графита относится к ромбоэдрической. [c.175]

    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]

    Углубление коагуляции для структурированной промывочной жидкости с неизменным содержанием твердой фазы приводит к разрыву сплошности структуры, в результате чего система теряет кинетическую устойчивость. Углублению коагуляции дисперсных частиц способствуют действия на систему тепла и холода, электрического п магнитного полей, механических сил и химических агентов. Наиболее сильное влияние на коагуляцию дисперсных спстем, в том числе структурированных, оказывают электролиты. [c.73]

    Дробление - это процесс уменьшения размеров кусков материала под действием механических сил. Обычно под собственно дроблением понимают процесс доведения размеров кусков материала до крупности не менее 5 мм, а под измельчением - менее 5 мм. [c.7]

    Пластичность - способность твердых полимерных материалов развивать необратимые (истинно остаточные) деформации при приложении внешнего поля механических сил. [c.402]

    Таким образом, граничные условия для потока теплоносителя оказывают ограниченное влияние на распределение газов в нижней части слоя и у стен. Наоборот, входные граничные условия для потока материала формируют поле эквивалентных отверстий в слое и потому оказывают главное влияние на распределение газов до тех пор, пока под действием протекающих процессов (измельчение, разложение, плавление и т. д.), а также механических сил, действующих в слое, не создаются условия, еще в большей степени влияющие на распределение поля эквивалентных отверстий, чем условия загрузки слоя сверху. [c.109]

    Рассмотрим действие механических сил, возникающих в слое. Известно, что средняя скорость перемещения материалов в шахтных печах составляет величину порядка 0,001 м/с, тогда как для газов она на три порядка выше, т. е. около 1 м/с. С этой точки зрения слой материала вполне может рассматриваться как неподвижный. Однако влияние медленного перемещения материалов весьма существенно сказывается на структуре слоя, т. е. на изменении поля эквивалентных отверстий и как следствие на распределении потока теплоносителя. [c.109]

    Твердый зернистый (0,1—4 мм) теплоноситель под воздействием механических сил приобретает некоторые свойства, характерные для жидкого состояния, а именно текучесть и способность к энергичному перемешиванию. Силовое воздействие на слой твердого сыпучего материала может осуществляться за счет сил сопротивления, проявляющихся при фильтрации через слой жидкости или газа (кипящий слой), при непрерывном встряхивании (вибрирующий слой) и при сочетании этих воздействий (виброкипящий слой). [c.132]

    Помимо температуры окружающей среды, на испарение водной фазы оказывают влияние такие климатические факторы района строительства, как относительная влажность и скорость ветра. Разрушение эмульсии также может быть ускорено воздействием механических сил, например - вибрациями катков. [c.33]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]


    Образование свободных радикалов в процессе механической деградации убедительно показывает, что основные цепи разрушались под действием локальных механических сил и что разрыв основной связи цепи вызывает образование свободного радикала на конце цепи с обеих сторон разрыва данной связи. [c.162]

    Предполагается, что разрыв цепных молекул под действием напряжения происходит путем кооперативного воздействия механических сил (снижение потенциального барьера разрыва соединяющих связей) и статистически флуктуирующих тепловых колебаний среды, восполняющих недостающую величину энергии, которая необходима для разъединения нагруженной связи. Также полагают, что уравнение (5.57) достаточно для адекватного описания влияния механической и тепловой энергий на скорость k процесса термомеханического разрыва цепи. Если данное предположение справедливо, то нехватка тепловой колебательной энергии будет увеличивать стабильность напряженной связи. Наоборот, с увеличением тепловой энергии ранее стабильные связи будут достигать критического уровня возбуждения и будет происходить их разрыв. Представляет интерес количественно проанализировать данный аспект взаимодействия вкладов тепловой и механической энергий в кинетику разрыва цепей ПА-6. [c.200]

    Два других метода плавления основаны на подводе тепла к поверхности материала и гравитационном оттоке расплава. Высокая вязкость расплавов полимеров не способствует гравитационному удалению расплава. Однако эти методы могут применяться в двух случаях а) когда нет необходимости удалять расплав и б) когда удаление расплава происходит при помощи механической силы. Случай а относится к таким процессам, как ротационное формование, при котором спекается порошок полимера, и термоформование, когда лист размягчается под действием тепла. Тепло подводится к материалу либо в результате прямого контакта с горячей поверхностью, либо путем конвекции или радиации. Характерная особенность плавления в этом случае состоит в том, что в результате получается готовое изделие или полуфабрикат. Случай б используется для получения большого количества расплава от спрессованной порции гранулята для последующего формования (например, при литье под давлением или горячем штамповании). [c.254]

    Если H X) — гамильтониан макромолекулы в отсутствие поля механических сил, то в его присутствии полная энергия макромо- [c.144]

    Как видно из рис. 12.13, в области напряжений, больших 8 МПа, энергия активации снижается. Такая тенденция к снижению может быть объяснена влиянием относительно больших напряжений. Действительно, согласно известной теории Эйринга, эффективная энергия активации подвижности кинетических единиц в поле механических сил равна 1)—аа, где а — объем кинетической единицы, а — напряжение растяжения. В нашем случае кинетической единицей является сегмент макромолекулы, для которого <2 10- м . Для напряжений о<8 МПа величина аа мала по сравнению с энергией активации и. При а>10 МПа значение аа 4Ч-5 кДж/моль, что уже заметно начинает снижать энергию активации (константа т при этом уменьшается от 4,4 до 4,2 для СКС-30). [c.347]

    Свойства неполярных молекулярных веществ в полной мере соответствуют их строению. Это в большинстве случаев легколетучие или сублимирующие вещества с низкими температурами плавления и кипения. В твердом состоянии такие вещества построены из молекул, слои которых под действием механических сил легко сдвигаются друг относительно друга. Эти вещества— типичные диэлектрики. Жидкие фазы представляют собой растворители с низкой диэлектрической проницаемостью. [c.351]

    МЕХАНОХИМИЯ ПОЛИМЕРОВ — отрасль химии, изучающая химические превращения полимеров под действием механических сил. [c.161]

    В процессе эксплуатации и переработки полимерные материалы подвергаются совместному воздействию различных факторов — тепла, света, кислорода воздуха, радиации, химических реагентов, механических сил, а также микроорганизмов. При этом протекают различные физические и химические процессы, приводящие к ухудшению физико-механических свойств полимера. Чаще всего ухудшение эксплуатационных характеристик полимеров вызывается разрывом химических связей в основной цепи макромолекулы и уменьшением их молекулярной массы. [c.67]

    Протекание химических реакций в полимерах при действии механических напряжений характерно для условий переработки полимеров. Действительно, если механически перемешивать воду или бензол в какой-либо емкости, то никаких химических изменений в них не происходит. Ускоряется лишь перемещение их молекул друг относительно друга. При механическом же перемешивании полимеров (на вальцах, в смесителях, в экструдерах и др.) происходит разрыв химических связей в макромолекулах и в результате инициируются химические реакции. Механические воздействия на низкомолекулярное вещество или олигомер приводят к разрушению слабых физических взаимодействий между его молекулами, которые легко преодолеваются механическими силами. Если же молекулы той же химической природы велики (макромолекулы полимеров), то суммарная энергия слабых физических взаимодействий между звеньями макромолекул становится больше энергии химической связи в главной цепи. И тогда механическое напряжение, приложенное к полимеру, вызовет разрыв более слабой связи, которой в данном случае окажется химическая связь в цепи макромолекулы. Так произойдет химический разрыв макромолекулы под влиянием механического воздействия. Очевидно, механодеструкция будет проходить до тех пор, пока сум- [c.249]

    Поскольку разрушение физических межмолекулярных связей с помощью механических сил зависит от температуры, и эффект механодеструкции сильно зависит от температуры. При низких [c.250]

    Проникновение молекул растворителя в поверхностный слой сопровождается отклонением отдельного звена макроцепи сополимера. Поскольку звенья связаны в макроцепи силами главных валентностей, перемещение звеньев вызывает появление локальных сил, которые передаются вдоль цепи, а через межмолекуляр-ные связи и на соседние макроцепи. Причиной, вызывающей движение материальной сплошной среды, является возникновение поверхностных сил, играющих основную роль в механике сплошной среды. Такие силы действуют на каждом элементе поверхности сплошной среды и носят название локальных напряжений (в физикохимии полимеров — давление набухания). Они имеют ту же физическую природу, что и явление осмоса для сильно разбавленных растворов [4]. Возникает поле механических сил, наводимое в системе диффузионными потоками, проникающими в материал полимера. Под воздействием наведенного поля сил начинают проявляться вторичные процессы, способствующие согласно принципам термодинамики снижению механических напряжений в слое. Такими процессами являются перемещения структурных элемАнтов сополимера и изменение конформаций макроцепей. Материальная сплошная среда приходит в движение. Направленность вторичных процессов обусловливает снижение химического иотенпиала растворителя в слое, поскольку происходит увеличение линейных размеров слоя сополимера. [c.304]

    Для грубой очистки от крупных частиц применяются механические пылеуловители, в которых частицы отделяются от воздуха (газа) под воздействием внешней механической силы. В пылеосадительных устройствах частицы оседают-под действием силы тяжести в инерционных устройствах поток воздуха резко меняет свое -направление, а частицы продолжают двигаться повыпадают из потока в устройствах, основанных на действии центробежной силы, при вращательном движении потока частицы отбрасываются к стенкам и осаждаются из газообразной среды. [c.258]

    В битумах со структурой геля имеются две фазы — каркас и механически. чяхваченное масло. Масляная фаза может быть выжата механическими силами. Если же такой битум покрыть тонким порошком неорганического вещества, масляная фаза проникнет в порошок под действием капиллярных сил. Из порошка масло может быть извлечено экстракцией. Степень адсорбции масла порошком для ряда глубоко окисленных битумов при различных температурах изучена Эйлерсом [21]. [c.16]

    Влияние размеров пор на прочность дорожного покрытия известно уже давно. Битумная пленка достаточно хорошо удерживается минеральной частицей в уплотненных смесях, если они приготовлены из сухого минерального компонента при повышенной температуре и уложены на свободно дренируемое основание. В пористых смесях вода в течение длительного периода времени находится вг непосредственном контакте с покрытой битумом частице и гакие покрытия могут быстро разрушаться под действием дождливой погоды. Ее едение присадок к битуму может отстрочить расслоение, но-поскольку дорожное покрытие разрушается под действием механических сил, более эффективна добавка наполнителей, усиливающих битумную пленку. Ли 188] нашел, что хорошим наполнителем служит гашеная известь или портландцемент, с которыми взаимодействуют кислые ксмпсненты, находящиеся в битуме. [c.85]

    Известны четыре способа дробления раздавливание, раскалывание, истирание и удар. Для больншнства дробильных аппаратов характерно сочетание всех механических сил с преобладанием одной из них. [c.8]

    Цепь, находящаяся в тепловом контакте с окружающей средой, может быть представлена системой связанных осцилляторов. Степень возбуледения отдельных осцилляторов (мод колебаний) меняется но статистическому закону. В отсутствие внешних механических сил при возбуждении осциллятора, представляющего колебание отрезка С—С-связи, выше критического значения прочности данной С—С-связи происходит разрыв цепи по С—С-связи. Схема потенциальной энергии на рис. 4.1 дана для иллюстрации представления о различных состояниях колебательной энергпи, прочности связи 1) и энергии диссоциации О. Определенный интерес представляет скорость актов диссоциации при возбуждении осциллятора выше критического значения Уо- [c.149]

    Специфическими молекулярными характеристиками полимеров являются молекулярная масса, определяющая размеры цепочек и гибкость макромолекулы, зависящая от ее строения и природы мел молекулярпоп и внутримолекулярной связи. Гибкость макромолекул — это способность полимерных цепей изменять свою конформацию в результате внутримолекулярного (мнкро-броунова) теплового дви кепия звеньев равновесная, или термодинамическая гибкость) илп же под влиянием внешних механических сил (кинетическая, или механическая гибкость). Конформация — это пространствеппое распределение атомов и атомных групп в макромолекуле, определяемое длиной соответствующих связей II значениями валентных углов такое распределение, которое может меняться без химических реакций. [c.48]

    Этот обратимый процесс мы можем провести так, что система и стандартная пружина только обменяются механической энергией, а система и тепловой резервуар — теплом. Кроме того, при этом должно иметь место уравновешение механических сил между системой и Гфужиной и температуры системы и резервуара не должны отличаться более чем на бесконечно малую величину. Общая энергия, приобретенная системой, равна общей энергии, отданной пружиной и резервуаром. Благодаря уравновешению, общая работа, произведенная пружиной, равна работе, произведенной над системой. Тогда согласно первому началу термодинамики теплота, отданная системой, должна быть равна теплоте, поглощенной тепловым резервуаром, или иначе —6Q=SQo. Поскольку температуры системы и стандартного резервуара одинаковы, то 8Q/T——8Qo/T. [c.106]

    Высокомолекулярные соединения, поглощая жидкость, уве-личиваются в объеме, развивая при этом значительную механическую силу, способную достигать нескольких сотен килограммов на 1 см площади студня. Переменное изменение объема в процессе набухания и отбухания при высыхании студня может быть повторено неограниченное число раз в том случае, когда имеет место ограниченное набухание, т. е. такое набухание, при котором высокомолекулярное вещество при обычной температуре набухает до известного предела (желатина, агар-агар в воде при обычной температуре). [c.296]

    Направленная механическая нагрузка вызывает перемещение частей дисперсной системы. Возможны два случая а) при постоянной нагрузке относительное перемещение точек системы прекратится б) частицы перемещаются все время, пока система испытывает действие внешних сил (течение системы). В первом случае выявляют характер зависимости между внешними механическими силами и отно-сител1>ным перемещением частиц (деформацией). Во втором случае устанавливают зависимость скорости относительного перемещения частиц от внешних сил. Равновесная деформация и стационарная скорость течения устанавливаются не мгновенно, а лишь через определенный промежуток времени. Изучение времени, за которое система принимает конечное состояние, представляет практический и теоретический интерес. [c.119]

    Одним из важных видов химических превращений полимеров ЯБЛяется протекание в них химических реакций при действии механических напряжений. Это связано с возможностью разрыва химических связей в макромолекулах в поле механических сил, а также активирующим действием механических напряжений на некоторые химические реакции функциональных групп макромолекул. Подобные явления наблюдаются при совместном действии химических агрессивных сред на полимеры в механически напряженном их состоянии. Эти дефекты характерны для полимерного состояния вещества и наблюдаются при переработке полимеров н эксплуатации изделий из них. [c.249]


Смотреть страницы где упоминается термин Механические силы: [c.203]    [c.215]    [c.216]    [c.15]    [c.12]    [c.163]    [c.22]    [c.221]    [c.298]    [c.216]    [c.251]    [c.254]   
Лакокрасочные покрытия (1968) -- [ c.15 ]




ПОИСК







© 2025 chem21.info Реклама на сайте