Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера коллоидная также дисперсная

    В природе происходит непрерывный процесс разрушения горных пород, приводящий в ряде случаев к образованию дисперсной системы таким путем в результате выветривания полевых шпатов образовалась повсеместно распространенная глина, В технике методом диспергирования пользуются для получения тонкодисперсных порошков серы, идущей на приготовление лекарств, а также для борьбы с вредителями и болезнями сельскохозяйственных растений минеральных красок графита, применяемого против образования накипи в паровых котлах, и т. д. Для приготовления высокодисперсных порошков технике применяются специальные машины, так называемые коллоидные мельницы. [c.168]


    Приготавливают серию коллоидных растворов (по указанию преподавателя) в соответствии с теми факторами, влияние которых на коллоидно-химические свойства подлежит исследованию. Так может изучаться влияние концентрации дисперсной фазы, состава или концентрации добавленного электролита, влияние pH и др., а также сравнение объектов (например, глин) различной природы. [c.266]

    Тонко дисперсный порошок двуокиси марганца или коллоидная двуокись марганца обладает адсорбирующими свойствами поглощает хлор, двуокись серы, а также соли бария, радия, алюминия, серебра и калия. [c.422]

    Системы с диаметром частиц дисперсной фазы 10 —10 см относят к коллоидным растворам, или золям. Частицы коллоидных растворов видимы в ультрамикроскоп или хорошо наблюдаются с помощью электронного микроскопа, поэтому коллоидные растворы относят к ультрамикрогетерогенным системам. Примерами коллоидных растворов служат растворы серы, металлов, их гидроксидов, сульфидов и других солей, а также кровь. [c.70]

    Вещества минерального и органического происхождения присутствуют в воде во всех видах дисперсного состояния. В грубодисперсном (взвешенном) состоянии находятся глинистые, кварцевые, известковые и гипсовые частицы, ряд веществ животного и растительного происхождения в коллоидном — частицы глин, соединения кремния и железа, сера, продукты жизнедеятельности и распада микроорганизмов, гуминовые вещества в истинно растворенном — газы, неорганические соли щелочных, щелочноземельных и тяжелых металлов, ряд органических соединений, а также бром, иод и другие. [c.38]

    Представлялось также интересным установить устойчивость коллоидной серы нри хранении. Для этого лабораторные образцы систематически проверялись на дисперсность. [c.184]

    Дисперсные системы могут также образовываться путем конденсации. Так, туман является продуктом конденсации водяных паров. Конденсация из раствора осуществляется путем понижения растворимости вещества в истинном растворе. Если по каплям вводить спиртовой раствор серы в воду, можно получить гидрозоль серы. Золь серы получается в результате соединения молекул в коллоидные частицы. При этом конденсация обусловливается понижением растворимости в результате замены растворителя. [c.327]

    В распространении тяжелых металлов и радионуклидов на поверхности суши определяющую роль играет водная миграция и условия формирования водных сред. Подвижность металлов зависит от их химических свойств, pH воды, окислительно-восстановительной обстановки, концентрации растворенных органических веществ и компонентов, содержащих соединения серы (сульфатов, сульфидов и др.), а также от форм, в которых они мигрируют взвешенной, коллоидно-дисперсной или растворенной и их физико-химических свойств (степень дисперсности коллоидов, знак и величина заряда, площадь реактивной поверхности и т.п.). [c.278]


    Флокулянты серий ВА и ВПК реагируют с гумусовыми веществами с образованием нерастворимых в воде комплексов, адсорбируются на отрицательно заряженных частицах коллоидных загрязнений воды, связывая их в крупные хлопья. Эти реагенты хорошо поглощаются также дисперсными частицами углей, оксидов, бактериальных культур и других, вызывая их агрегацию. Часто при этом с помощью ВПК удается сфлокулировать мелкие частицы, которые не агрегируют в присутствии высокомолекулярных неионных или анионных полимеров. Флокулянты ВПК с успехом могут быть использованы для очистки оборотных вод углеобогащения, концентрирования клеточных суспензий, для очистки сточных вод нефтеперерабатывающих фабрик и т. д. [c.128]

    Лериодической структурой из коллоидных частиц, разделенных жидкими прослойками, обладают также наполненные гелеобразные системы типа консистентных смазок на основе серы [601] или дисперсных структур в углеводородных средах, содержащих в качестве наполнителей диспергированные металлы. При этом возможно наложение тиксотропных структур, образованных дисперсными частицами наполнителя и загустителя — мыла или другого гелеобразователя. К таким слож- [c.138]

    Исходя из теории образования нефти как результата длительных превращений органических остатков, основную часть нефти составляют углеводороды различного строения. Однако выходящая на поверхность нефть выносит с собой попутный газ, воду и механические частицы песка, горной породы и т. д. Количество этих компонентов для различных месторождений различно. Эти компоненты нерастворимы, олеофобны и образуют дисперсную систему, которая подвергается разделению. Но и после отделения нерастворимых компонентов, согласно химической природе самой нефти, она не является молекулярным раствором, или ньютоновской жидкостью. Наличие в нефти гетероатомных соединений, а также высокомолекулярных соединений, большинство которых содержат серу, азот, кислород и металлы, сообщает нефти, нефтяным фракциям и остаткам специфические свойства, присущие коллоидным и дисперсным системам. В зависимости от размеров частиц дисперсной фазы такие системы могут быть как ультрагетерогенными (размер частиц от 1 до 100 нм), так и грубодисперсными (размер частиц > 10 ООО нм). [c.28]

    В гидрофобных коллоидах взаимодействие между их частицами и молекулами воды практически отсутствует или выражено слабо. При коагуляции они выделяются в виде малогидратированных порошкообразных веществ. Примерами гидрофобных коллоидов могут служить многие металлы в коллоидно-дисперсном состоянии, например золото, серебро, медь, платина, а также сера, сульфид мышьяка (П1) и некоторые другие соединения, [фактически нерастворимые в воде. [c.204]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]

    Примерами гидрофильных золей, теряющих устойчивость лищь в концентрированных растворах электролитов, являются золи серы, оксидов и гидроксидов металлов и других соединений, дисперсная фаза которых сильно гидратирована за счет образования водородных связей с молекулами воды. Исследования стабильности и электрокинетического потенциала ряда гидрофобных золей (галогенидов серебра, сульфидов мышьяка и сурьмы), к которым были добавлены неионогенные поверх-ностно-активные вещества (оксиэтилированные эфиры этиленгликоля), показали, что образовавшиеся при этом дисперсии также представляют собой типичные лиофильные коллоидные растворы. Краснокутская и Сапон обнаружили, что с увеличением содержания ПАВ в растворе устойчивость золей в определенной области концентраций реагента возрастает настолько, что коагуляция наступает только в высококонцентрированных растворах солей. Таким образом, гидратированные молекулы неионных ПАВ, адсорбируясь на гидрофобных коллоидных частицах, превращают их в гидрофильные. При действии электролитов с однозарядными противоионами очень малые добавки ПАВ вызывают эффект сенсибилизации. При коагуляции высокоустойчивых коллоидных растворов, стабилизированных ПАВ, заряд противоионов, как у всех гидрофильных золей, не имеет существенного значения. Гидрофилизи-рованный золь становится чувствительным к совместному действию дегидратирующих агентов (например, этилового спирта или повышенных температур) и небольших количеств солей. Концентрация ПАВ, вызывающая превращение гидрофобного золя в гидрофильный, снижается с увеличением длины оксиэтиленовой цепи и углеводородного радикала молекулы ПАВ, но не связана с критической концентрацией мицеллообразования поверхностно-активного соединения. [c.23]


    Лиофобные коллоиды — это обычно дисперсные системы нерастворимых неорганических веществ в жидкой среде, большей частью в водном растворе. Они отличаются относительно высокой чувствительностью к коагуляции электролитами, а также тем, что процесс их флоккуляции необратим, и обычно флок-кулят не удается полностью пептизировать путем разбавления растворителем. Такие дисперсные системы (золи) имеют сравнительно малую вязкость, и продукт, образующийся при флоккуляции, содержит относительно небольшое количество воды. Типичные примеры — коллоидная сера, золото, иодид серебра и сульфид мышьяка (III). [c.168]

    Эффективность устранения мутности воды путем коагуляции зависит от типа коллоидных частиц, температуры, значения pH, химического состава воды, от вида и доз коагулянтов и вспомогательных веществ, а также от продолжительности и степени перемешивания. Хотя в химии термин коагуляция означает дестабилизацию коллоидной дисперсной системы путем нейтрализации двойного электрического слоя (см. рис. 2.4,а), а флокуляция означает слипание частиц, специалисты употребляют эти термины не только для обозначения химических явлений. Чаще всего коагуляцию и флокуляцию связывают с физическими процессами, протекающими при химической обработке воды. Для растворения коагулянтов и смешивания их с обрабатываемой водой применяют перемешивание, иногда весьма энергичное. Флокуляция, протекающая непосредственяо за процессом химической дестабилизации дисперсной системы, представляет собой медленный процесс соединения дестабилизированных частиц в хорошо сформированные хлопья, размер которых достаточен для выпадения их из раствора. Слово коагуляция обычно употребляют для описания всего процесса смешивания и флокуляции. Технологически химическая обработка может быть представлена серией сооружений для смешивания, флакуляции и осаждения или совмещена в одном устройстве. Подобное комплексное устройство (см. рис. 7.8) обычно обеспечивает быстрое перемешивание (в течение 1 мин), флокуляцию (35 мин) и седиментацию (4 ч), после чего воду фильтруют через песчаные фильтры для удаления неосаждающихся частиц. В центральной смесительной камере флокулятора-осветлителя (см. рис. 7.9) обрабатываемая вода смешивается с введенными в нее реагентами и уже флокулированными частицами. Твердые частицы, осевшие на периферии, автоматически возвращаются в зону смешения избыток осадка удаляется со дна камеры. [c.20]

    Результаты испытаний образцов после восьми месяцев хранения показали, что дисперсность коллоидной серы не только не снизилась, но даже несколько повысилась. Возможно также, что указанное расхожде]1ие обусловлено методикой определения дисиерсности. [c.184]

    Коагуляция лиофобных коллоидных растворов наступает под влиянием повышения температуры, действия света, высокочастотных колебаний в ультразвуковом поле, встряхивания, перемешивания и некоторых других причин, но наиболее важным фактором коагуляции таких систем является действие электролитов. Добавление даже небольших количеств солей к гидрозо лям металлов, галогенидов серебра, гидроокиси железа, серии--стого мышьяка и ртути, берлинской лазури и подобным коллоидным растворам, а также к многим высокодисперсным суспензиям (глины, кварца и других) приводит к выпадению в осадок частиц дисперсной фазы. Наименьшая концентрация электролита, вызывающая этот эффект за определенный корот кий промежуток времени, называется коагулирующей концентра -цией или порогом коагуляции. [c.183]

    В отличие от молотой серы и серного цвета при размешивании коллоидной серы в воде образуется равномерная, похожая на молоко устойчивая суспензия. Благодаря чрезвычайно высокой дисперсности коллоидная сера обладает высокой фунгицидной активностью и применяется для борьбы с целым рядом возбудителей грибных заболеваний растений. Являясь также акарицидом, препарат успешно применяется в борьбе с хлопковым кле-щиком. Для человека препарат безвреден. [c.196]


Смотреть страницы где упоминается термин Сера коллоидная также дисперсная : [c.352]    [c.94]    [c.204]    [c.219]   
Химические средства защиты сельскохозяйственных культур Издание 2 (1978) -- [ c.81 , c.97 , c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Сера коллоидная дисперсная



© 2025 chem21.info Реклама на сайте