Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование стабильности ферментов

    Скорость ферментативной реакции зависит от концентрации субстрата (субстратов), pH, температуры, присутствия активаторов или ингибиторов, природы буфера, его ионной силы и др. Ряд факторов оказывает влияние на стабильность фермента, вызывая необратимые-изменения его нативной конформации. Это необходимо учитывать, подбирая условия измерения активности (pH, температура, время инкубации). Подробное исследование стабильности ферментов описано, ниже. [c.206]


    С точки зрения биохимической эволюции такая близость свойств фермента, выполняющего у разных животных одну и ту же химическую функцию — каталитическое расщепление ацетилхолина. не является неожиданной. Ацетилхолиновый механизм передачи возбуждения в специализированных нервных структурах, возникший, по-видимому, на самых ранних стадиях эволюции нервной системы, мог закрепиться только благодаря тому, что одновременно вызвал образование высокоэффективного приспособления—ацетилхолинэстеразы для быстрого разрушения медиатора. Без этого приспособления ацетилхолиновый механизм в принципе не мог существовать. Качественная неизменность в эволюции одного из медиаторов нервного возбуждения — ацетилхолина — и служит причиной стабильности фермента, специфически настроенного на разрушение этого медиатора с необходимой скоростью. Поскольку, однако, эволюция функций нервного аппарата была связана с увеличением числа структурных элементов нервной системы и усложнением схем соединения их в общую самонастраивающуюся систему, эволюция ферментного аппарата шла, по-видимому, двумя путями. Первый путь — это увеличение количества и концентрации ацетилхолинэстеразы в проводящих возбуждение структурных элементах для обеспечения достаточной скорости разрушения любых количеств ацетилхолина, которые могут выделиться. Второй путь — более совершенная система пространственного распределения фермента в структуре тканей нервной системы. Гистохимические исследования нервной системы демонстрируют высокоспециализированную локализацию значительных количеств ацетилхолинэстеразы в ограниченных объемах нервной ткани, совершенствующуюся в ходе эволюции [19—21, 109.  [c.171]

    ИССЛЕДОВАНИЕ СТАБИЛЬНОСТИ ФЕРМЕНТОВ [c.214]

    Описанные выше корреляции могут быть использованы не только при исследованиях металлсодержащих ферментов и комплексов металлов с макромолекулами. Например, исследование констант активации или ингибирования какой-либо ферментативной реакции ионами различных металлов и сравнение этих констант с константами стабильности комплексов тех же ионов с различными лигандами может дать представление о природе групп активного центра фермента. Всевозможные сравнительные исследования ионов металлов чрезвычайно полезны для изучения специфических участков крупных молекул. [c.414]

    Кроме повышенной устойчивости к тепловой денатурации некоторые исследователи используют в качестве меры термостабильности белков значительную устойчивость их к денатурации такими соединениями, как мочевина, солянокислый гуанидин и додецилсульфат натрия. Но и в этом случае результаты исследований ие содержат достаточной информации о причине повышенной стабильности фермента и пе доказывают, что фермент устойчив при максимальной температуре роста соответствующего организма. Действительно, тщательное рассмотрение [c.260]


    Изолированные протопласты можно культивировать. Обычно для этого используют те же среды, на которых растут изолированные клетки и ткани. Сразу же после удаления ферментов у протопластов в культуре начинается образование клеточной стенки. Протопласт, регенерировавший стенку, ведет себя как изолированная клетка, способен делиться и формировать клон клеток. Регенерация целых растений из изолированных протопластов сопряжена с рядом трудностей. Получить регенерацию через эмбриогенез удалось пока только у растений моркови. Стимуляцией последовательного образования корней и побегов (органогенез) добились регенерации растений табака, петунии и некоторых других растений. Следует отметить, что протопласты, изолированные из генетически стабильной клеточной культуры, чаще регенерируют растения и с большим успехом используются при исследованиях генетической модификации протопластов. [c.178]

    Отдельные исследования коснулись некоторых белковых компонентов (ферментов), связанных с обменом веществ (в основном с углеводным метаболизмом) этих органов растений. Скудность сведений по сравнению с имеющейся информацией по зерновым (хранение запасных белков) или по листовой зеленой массе (синтез органических веществ за -счет функционирования хлорофилла) можно объяснить второстепенной ролью клубней в растительном мире. Недостаточность информации может быть связана также с относительно низким содержанием белков в таких органах растений и трудностью работы с этими органическими веществами, стабильность и однородность которых трудно обеспечить в лабораторных условиях. Кроме того, большинство видов растений, образующих клубни, происходят из тропиков и поэтому отдалены от лабораторий, которые могут заинтересоваться их местным использованием как источником питания, а не как экспортным товаром это обстоятельство ограничило масштабы таких исследований, В отношении других продуктов того же тропического происхождения, но являющихся предметом экспорта, например каучука, какао, кофе, положение иное вероятно, эта область поглотила весь наличный исследовательский потенциал [53], [c.269]

    Для реакций, проходящих с участием коферментов, почти в любом случае можно предложить механизмы, опирающиеся на рабочие модельные системы В отличие от этого ни для одной реакции, катализируемой чистым ферментом, детального механизма не сформулировано. Предметом исследования механизма органической реакции является установление всех ее промежуточных стадий— как переходных состояний, так и интермедиатов—с такими подробностями, которые нам известны для стабильных начальных соединений и продуктов. В настоящее время мы не можем ни для одной ферментативной реакции надежно идентифицировать все промежуточные состояния. [c.456]

    Аксиома, что механизм действия фермента не может быть полностью выяснен без знания его структуры. Ни для одного из кобаламин-зависимых ферментов не определена первичная структура, а определение трехмерной структуры кажется делом далекого будущего. Метилмалонил-СоА-мутаза в силу доступности, стабильности и относительно низкой молекулярной массы была выбрана в качестве объекта исследования [132]. Авторами был получен препарат фермента, гомогенный согласно данным ультрацентрифугирования и другим критериям. Средняя молекулярная масса 124 000 под действием гуанидинхлорида фермент диссоциирует на две субъединицы одинакового размера. Получен также кристаллический комплекс фермента с НО-СЫ, однако кристаллы не удовлетворяли требованиям кристаллографического анализа. [c.683]

    Эти ферменты представляют собой идеальный объект для исследования. Они хорошо растворимы в воде и устойчивы в широком интервале pH без необратимой денатурации белка, в частности, в случае каталазы в интервале pH 2—11 [51]. Такую же стабильность по отношению к изменениям pH обнаруживает пероксидаза хрена [53]. К каталазам и пероксидазам относятся некоторые из наиболее термостабильных ферментов. Некоторые пероксидазы сохраняют активность даже при 90°С [197]. Интенсивные УФ-спектры железопорфирина (гема) предоставляют в руки исследователей очень удобный способ наблюдения за ходом реакции, а наличие только одного активного центра в каждой молекуле фермента (за исключением каталазы) существенно упрощает интерпретацию результатов. Рассматриваемая группа ферментов характеризуется набором частично перекрывающихся, но различных свойств, хотя и содержит одинаковый кофактор или комплекс металла. Реакции этих комплексов ионов металла с белком можно сравнивать с реакциями небелковых комплексов, которые, как будет показано ниже, обладают в основном такими же каталитическими свойствами, но в [c.198]

    Интенсивные исследования стабильности ферментов, проведенные на протяжении двух последних десятилетий, привели к обнаружению новых молекулярных механизмов стабилизации белковых молекул, в том числе сетей внутримолекулярных ионных взаимодействий [343], которые позволили сознательно улучшать соответствующие свойства ферментов. Особенно продуктивными в этом отношении оказались методы направленной эволюции белковых молекул, применение которых позволяет повышать температуру денатурации белковых глобул на 10-15 °С без ущерба для их ферментативной активности. Особенно впечатляющим достижением здесь является 340-кратное повышение времени полужизни протеиназы Ba illus stearothermophilus при 100 °С без ухудшения ее каталитических свойств [211]. Такого [c.455]


    В СВЯЗИ С проблемой исследования молибденовых ферментов наибольший интерес представляет обнаружение слабого сигнала ЭПР водных растворов Мо(У) и цистеина [П7]. Хотя этот сигнал соответствует менее чем 1% всего молибдена (тогда как в случае ксантиноксидазы и сульфитоксидазы сигнал ЭПР соответствует до 50% молибдена), его появление указывает на возможность равновесия типа диамагнитный димер парамагнитный мономер. Наличием такого равновесия было объяснено несоответствие между величиной сигнала ЭПР и содержанием молибдена в ферментах [61 ]. Стабильность и интенсивность сигнала ЭПР растворов Мо(У) и цистеина критически зависит от концентрации компонентов, pH и природы буфера. В 1 М фосфатном буфере (pH 6) при концентрации Мо(У) 10 М наблюдается слабый неустойчивый сигнал ЭПР [117]. Однако Хуанг и Хэйт [118] получили вполне устойчивый, хорошо разрешенный сигнал ( г = 2,029, = 1,972, == 1,931 Л(9 Мо), 22 = 5,4, уу = 2,4,. гл = 3,4 мТ) при pH 7 —10 в 0,2 М фосфатном буфере при концентрации Мо(У) 10 М. При введении цистеина в раствор Мо(У) наблюдаются два изменения окраски. Сигнал ЭПР появляется при втором переходе. Интенсивность сигнала ЭПР пропорциональна квадратному корню из концентрации молибдена. Эти наблюдения подтверждают, что сначала Мо(У) и цистеин образуют диамагнитный димер, который затем диссоциирует с образованием парамагнитного мономера. С повышением температуры интенсивность сигнала ЭПР уменьша- [c.305]

    Следует отметить, что сих пор не существует общепризнанных представлений о причинах термосааби.1ьности некоторых белков, хотя в этом направлении ведутся обширные теоретические и экспериментальные исследования [2496-2500]. Два фактора, по-видимому, играют доминирующую роль - гидрофобные взаимодействия и конформационная энтропия разворачивания глобулы. Предпринимаются попытки увеличить стабильность ферментов методами направленного мутагенеза [2501]. [c.235]

    Как отмечал Уильямс (Williams, 1975), кажется вероятным, что сравнение стабильности ферментов в клетках факультативных термофилов, выращенных при высокой и иизкой температурах, станет областью исследования, в которой обязательно будут достигнуты успехи, так как в этом случае можно будет проводить прямые сравнения ферментов, исключающие влияние особенностей их структуры, обусловленных штаммовой изменчивостью . [c.279]

    Для удобства применения холинэстеразы иммобилизуют в по.шмер-ные пленки или гели. При этом существенно увеличивается устойчивость фермента к влиянию внешних факторов. Так, при иммобилизагщи холинэстеразы в желатиновый гель срок ее хранения составляет 2-3 года, а при непрерьганой работе активность препарата падает на 20% лишь через 10 дней. Наряд) с повьпиением стабильности иммобилизация хо.пинэстераз обеспечивает многократное использование препарата. Заметим, что при определении необратимых ингибиторов, например фосфорорганических пестицидов, повторное использование фермента в каждом случае требует специальных исследований В качестве реактиваторов применяют гидро-ксиламин, оксимы и др [c.290]

    Архитектура иммуноглобулина может служить основой для синтеза in vitro пептидов с заданными связывающими свойствами. Для теоретических и практических исследований может оказаться крайне полезным синтез in vitro полипептидной цепи с определенной специфичностью и сродством к данному соединению. Один из возможных путей может начаться с природной или синтетической области VlIVh без гипервариабельных петель в качестве остова. Путем включения подходящих последовательностей на место гипервариабельных сегментов можно затем сформировать специфичный центр связывания рассматриваемого лиганда без нарушения процесса свертывания и стабильности остова [498]. Пример Си —Zn -содержащей пероксид-дисмутазы [286] можно рассматривать как. природный прецедент этого метода пептидной инженерии. В этом случае геометрия координации атомов металла в активных центрах имеет очень много общего с соответствующими фрагментами кристаллических структур медь-имидазольных и цинк-имидазольных. комплексов [661]. Таким образом, обе основные особенности этогО фермента, структура иммуноглобулина и комплекс металла, могуг быть воспроизведены химиками-органиками. [c.246]

    После того как бьша обнаружена способность 5-фторурацила тормозить развитие рака, появилось большое число работ по синтезу и исследованию физиологического воздействия не только самого препарата, но и различных фтор-производных 5-фторурацила. Оказалось, что введение группы СР3 в положение 5 приводит к усилению биологических свойств. Такое соединение действует как антибиотик против герпеса и аденовирусов, применяется для лечения глазных болезней. Наибольшее отличие от 5-фторурацила в данном случае заключается в том, что активным является только соединение с присоединенным сахаром. Механизм его лечебного воздействия заключается в ингибировании ти-мидилатсинтетазы в результате необратимого присоединения к ней. Обычно стабильные соединения с группой СРз, в данном случае атомы фтора этой группы, проявляют биологическую активность. По этой причине такие соединения являются так называемыми ингибиторами "фермента-самоубийцы" [16]. [c.298]

    В связи с малой стабильностью большинства свободных радикалов метод ЭПР незаменим при изучении радикальных реакций, например реакций окис- ения под действием ферментов. ЭПР также применяется для исследования структуры и конформаций различных биообъектов (ферменты, фосфолипиды и т. д.). Для этого к исследуемому веществу присйединяют устойчивую ради- [c.509]

    Существуют природные соединения, содержащие связь углерод —металл. Хотя большинство металлоорганических соединений нестабильно в водной среде, исследование механизма действия витамина В12 6.86 (см. разд. 6.12.4) выявило, что живые организмы могут использовать реакции металлоорганической химии для решения своих метаболических проблем при функционировании кобольтосодержащих ферментов в качестве промежуточных соединений образуются кобальтоорганические вещества. Что же касается более стабильных метаболитов со связями углерод — металл, то в природе встречаются только простейшие. В последнее время выяснилось, что процесс биометилирования, показанный выше для мышьяка, имеет более широкое распространение. [c.624]

    Еще 10 лет тому назад Н. Д. Иерусалимский — крупный советский микробиолог— писал Некоторые этапы химических синтезов трудны и сопровождаются образованием большого числа изомеров и побочных продуктов. В таких случаях полезную услугу могут оказать ферментные препараты или живые носители ферментов — микроорганизмы. От небиологических катализаторов они выгодно отличаются специфической направленностью своего действия. К тому же вызываемые ими биохимические процессы протекают при обычных температурах и давлении. Их осуществление не требует ни антикоррозийной аппаратуры, ни крупных энергетических затрат . В значительной мере благодаря его инициативе в СССР были начаты интенсивные исследования в области инженерной микробиологии. Однако, как уже говорилось выше, применение микроорганизмов в целях направленной трансформации органических веществ существенно ограничивалось спецификой работы с микроорганизмами или выделенными ферментами, которые требовали специальных условий для получения, сохранения и воспроизводства. В настоящее время известны пути стабилизации (иммобилизации) ферментов путем либо химической фиксации активной конформации с помощью дифункциональных (сшивающих) реагентов, либо химической прививки к полимерным носителям и даже к стеклу, либо включения в гель инертного полимера. Это позволило превратить ферменты из крайне нестойких веществ в довольно стабильные, препараты, которые могут неоднократно вводиться в реакционную массу в качестве катализатора. Более того, стало возможным, не выделяя фермент, проводить такую иммобилизацию прямо на клеточном уровне, используя выращенную культуру соответствующего микроорганизма. Все это позволяет рас-сч1итывать в ближайшие годы на широкое и эффективное В1недрение методов ферментативного превращения не только в лабораторную, но и в промышленную практику. Именно поэтому мы надеемся, что появление даже неполной сводки, составленной американскими специалистами, вызовет интерес у советского читателя. [c.6]

    Ферменты, присоединенные к хорошо охарактеризованным носителям, могут служить простыми. моделями биологических систем, которые находятся в живых клетках. Действительно, синтетические полимерные матрицы точно не воспроизводят ситуацию in vivo, однако исследование таких моделей является важным этапом в рассмотрении ферментативного катализа как гетерогенного процесса [38]. Преж де всего они механически более устойчивы. Хорошо определенная химическая структура матриц иозволяет изучать влияние только одного параметра, такого, как влияние гидрофобности или влияние заряженных частиц на ферментативное действие. Можно также изучать влияние микроокружения матрицы, а также эффекты, возникающие благодаря различным локальным концентрациям субстрата, продукта, протонов эффекторов. и т. д. Эти различия в локальных концентрациях возникают в результате каталитической активности ферментов или влияния соседних молекул ферментов. Влияние микроокружения на активность и стабильность иммобилизованных ферментов детально обсуждается в разд. 12.2 и 12.3. Влияние, оказываемое матрицей, с трудом можно отличить от влияния микроокружения, создаваемого в результате собственно ферментативной реакции как самого фермента, так и других окружающих ферментов. [c.439]

    Однако первая стадия наиболее ответственна, поскольку сама вероятность каталитического акта строго определяется возможностью образования комплекса Михаэлиса. Первично образующееся соединение фермента с субстратом носит название комплекс не вследствие его прямого отношения к классу комплексных соединений, как это понимается в химии, а, скорее, потому, что реальная природа этого соединения пока неизвестна. В огромном большинстве случаев также неизвестны достаточно точно те химические взаимодействия, которые обеспечивают образование комплекса неизвестны и механизмы первичного перераспределения электронов в молекуле субстрата на стадии возникновения первичного комплекса. Более того, до сравнительно недавнего времени мы не имели прямых экспериментальных доказательств реальности существования самих комплексов, которое вытекало в основном из кинетических данных. В 1943 г. были проведены спектральные исследования, свидетельствовавшие о возможности образования промежуточных фермент-субстратных соединений например, в опытах Чанса [13] спектрофотометрическим методом было показано образование комплекса пероксидазы с Н2О2. Были попытки обнаружить фермент-субстратный комплекс методом зонального электрофореза [14]. Однако все эти результаты получены непрямыми методами. В 1963 г. японским авторам Яги и Озава [15] удалось получить прямые доказательства реальности комплекса Михаэлиса. Они выделили стабильный в анаэробных условиях кристаллический комплекс оксидазы D-аминокислот (D-аминокислота О 2 — окси-доредуктаза, КФ 1.4.3.3) с D-аланином (рис. 6). Этот комплекс содержал, помимо апофермента и субстрата, флавинадениндинукле- [c.48]

    В ряде лабораторий ведутся на молекулярном уровне исследования различных процессов образования водорода, а также механизмов реакции расщепления воды, В образовании водорода принимают участие гидрогеназа и нитрогеназа. Сегодня активно изучаются свойства этих ферментов из разных организмов, в частности механизмы регуляции их синтеза и активности, а также стабильность в присутствии кислорода. Предметом важных исследований является также образование восстановительных эквивалентов и поток электронов к этим ферментам, которые пр.и определенных условиях служат факторами, лимитирующими активность. Эти опыты позволят понять суть ука-аанных процессов и попытаться оптимизировать выделение водорода имеющимися в нашем распоряжении генетически охарактеризованными организмами. Ряд исследователей-генетиков занят отбором мутантов с повышенной способностью к образованию ] одорода лли аммиака. Примерами удачного применения зиетодой генетической инженерии для создация ферментов с желаемыми свойствами может быть получение устойчивой к кис-.лороду гидрогеназы. Удалось повысить содержание гидрогеназ в клетках и лолучить микроорганизмы, способные выделять фиксированный ими азот в окружающую среду в форме аммиака. [c.79]

    Мутации, вызываемые путем сайт-специфичного воздействия,, используют сегодня для проверки адекватности результатов. структурных исследований. В некоторых случаях с их помош,ыа-удалось пдеазать, что структурная стабильность белка и era-каталитическая активность могут быть разобщены. Накопив достаточное количество информации о взаимосвязи между стабильностью структуры белка и его функцией, мы, возможно,, сумеем осуществлять тонкую регуляцию активности биологических катализаторов и создавать полностью синтетические их аналоги. Недавно появилась работа, в которой сообщалось о клонировании первого синтетического гена фермента, кодирующего активный фрагмент молекулы рибонуклеазы. [c.184]

    Большинство мезофильных бактерий не будет расти при значениях pH ниже 5,5. Они используют фермент оксидоредук-тазу для окисления водорода, метаболизм ацетата и Срсоеди-нений у них зависит от pH. Низкие значения pH в большей степени благоприятствуют восстановлению протона до водорода, нежели его восстановлению в метане, и поэтому при таких условиях продукция метана обычно приостанавливается. Эмпирическим путем было, кроме того, показано, что желателен также верхний предел pH равный 8. Хотя этот вопрос исследован еще недостаточно, но так как значение pH 8,2 является критическим для превращения гидрокарбоната в карбонат, то может быть привлечено много других объяснений, кроме изменения ферментативной активности, например стабильность биогаза и осаждение ионов металлов. С точки зрения необходимого диапазона pH желательны системы с хорошей буферной емкостью для поддержания стабильности сбраживателя. В случае высокой концентрации азотсодержащих питательных веществ эта буферная емкость может возникать естественным образом благодаря равновесию НН4 МНз -Ь Н с константой ионизации рКа — [c.51]

    С 1946 г. в нашей лаборатории [19, 20, 21, 22] проводились исследования каталитической активности различных комплексных соединений меди, железа, кобальта, никеля, цинка, свинца и других металлов по отношению к реакциям разложения перекиси водорода, окислению полифенолов, бензальдегида, фенилендиамина, аскорбиновой кислоты, сероводорода и некоторых других субстратов. Особенно детально изучались соединения меди, так как каталазная функция иона меди может быть активирована посредством комплексообразования с аммиаком и аминами почти в миллион раз. Соответствующие комплексы могут поэтому рассматриваться как медные модели фермента каталазы. Варьируя природу лигандов, мы можем оценить, в какой мере существенны для уровня активности такие факторы, как образование хелатов, замещение в координационной сфере атомрв азота на другие атомы, величина pH, стабильность комплекса и т. п. Для большинства исследованных комплексов порядок реакции по перекиси водорода был близок к первому, т. е. картина в целом очень по.ходила на то, что наблюдалось у аммиаката. [c.148]

    В работе ферментных систем существенную роль играют ионы металлов. Вместе с тем удивительно мало число стабильных комплексных соединений металлов, прочно связанных с белковой частью фермента, которую удалось изолировать из биологических материалов. Это прежде всего металлопорфириновые комплексы, содержащие обширные л-электронные системы, обстоятельно исследованные рядом авторов (Л. А. Блюменфельд, Б. и А. Пюльман и др.). Металлопорфирины действительно вмонтированы , по выражению Болдуина, в белок и с трудом могут быть от него отделены. Зато число менее прочных комплексов, образуемых металлами со всевоз- [c.180]

    Исследование влияния на эту третью стадию изменения pH, температуры и состава раствспт еля показало, что ионизированная карбоксильная группа контролирует скорость этой стадии. Из кинетических данных следует, что в случае фицина соединение ацил-фермент более стабильно, чем в случае трипсина или химотрипсина. Это позволяет сделать два интересных вывода во-первых, фицин является более эффективным ферментом для реакции переноса (см. следующий раздел) и, во-вторых, он гидролизует эфиры и амиды с примерно одинаковой скоростью. [c.333]

    Изменение активности ферментов. Микроорганизмы, окисляющие спирты, отличались высокой активностью внеклеточных ферментов, особенно протеолитических. Микробные протеазы являются, как правило, внеклеточными ферментами и, как видно из данных табл. 5.4 и 6.5, обладают широкой видовой специфичностью. Внеклеточные и внутриклеточные протеазы микроорганизмов, окисляющих алканы, нафтены и арены, отличались различной активностью. У большинства исследованных нами видов и физиологических групп бактерий (см. табл. 4.5 и 5.4) протеазная активность в клетках выше, чем в культуральной жидкости. С другой стороны, активность клеточных протеаз более стабильна, чем в культуральной жидкости, и меньше подвержена влиянию внешних воздействий, включая и действие высоких концентраций солей. В отличие от этого протеазная активность культуральной жидкости микроорганизмов, окисляющих спирты, превышала активность клеточных ферментов (табл. 6.5). [c.177]

    Глубокий анализ электронной структуры железа и его ближайшего окружения на основе результатов мессбауэровского исследования цитохрома с можно найти в работе Кука и Дебрунера [44]. Они обратили внимание на заметное отличие мессбауэровского спектра лиофильно высушенного окисленного ( )ермента от спектра заморол<енного раствора феррицитохрома с. По-видимому, этот результат свидетельствует о влиянии взаимодействия с водой различных групп белка, находящихся в ближайшем соседстве с гемом, на электронное состояние железа. В противоположность поведению окисленной формы фермента восстановленная форма почти не изменяет своего мессбауэровского спектра при лиофильной сушке образца. Все сказанное позволяет сделать вывод о том, что стабильность структуры щели в молекуле белка, содержащей группу гема, во втором состоянии окисления значительно выше, чем в первом. [c.427]


Смотреть страницы где упоминается термин Исследование стабильности ферментов: [c.57]    [c.253]    [c.391]    [c.134]    [c.406]    [c.332]    [c.42]    [c.677]    [c.191]    [c.8]    [c.309]    [c.442]    [c.368]    [c.171]    [c.480]    [c.224]    [c.276]    [c.222]    [c.240]   
Смотреть главы в:

Практикум по биохимии Изд.2 -> Исследование стабильности ферментов




ПОИСК







© 2025 chem21.info Реклама на сайте