Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия взаимодействия адсорбат адсорбат

    При малых значениях р1р и С >1 уравнение БЭТ (XVI, 32) переходит в уравнение Лэнгмюра (XVI, Юв) в соответствии с тем, что при выводе уравнения БЭТ не было принято во внимание притяжение адсорбат—адсорбат. Поэтому уравнение БЭТ выполняется тем лучше, чем относительно больше энергия взаимодействия адсорбат—адсорбент ио сравнению с энергией взаимодействия адсорбат—адсорбат, т. е. оно хорошо выполняется лишь ири больших чистых теплотах адсорбции (при С>1). Этому условию близко отвечает, например, адсорбция бензола на поверхности графитированной сажи (изотерма адсорбции представлена нй рис. XVI, 7). На рис. XVI, 8 показана зависимость дифференциальной теплоты адсорбции (т. е. теплоты, выделяющейся на моль адсорбата при данном заполнении ) пара бензола от заполнения поверхности графитированной сажи. Из рисунка видно, что ири преимущественном заполнении первого слоя (до 6 = 1) теплота адсорбции почти постоянна (Ql= 0,2 ккалЫоль, чистая теплота адсорбции Q —L=2,Q ккалЫоль), а ири преимущественно полимолекулярной адсорбции теплота адсорбции близка к теплоте конденсации Ь. [c.453]


    Следующий шаг в развитии вопроса о том, как учитывать силы притяжения между адсорбированными молекулами или, иначе, энергию взаимодействия адсорбат — адсорбат, был сделан в 1925 г. Фрумкиным. [c.112]

    Экспериментальные кривые, показанные на рис. 25, прекрасно подтверждают изложенную теорию. Они дают возможность оценить константу а в (4.46) и (4.47), отрал<ающую энергию взаимодействия адсорбат—адсорбат.  [c.114]

    По мере заполнения поверхности и соответствующего увеличения 0 растет энергия взаимодействия адсорбат —адсорбат, вследствие чего наклон изостер растет, а при переходе к полимолекулярной адсорбции, наоборот, уменьщается. Построение изостер позволяет 23—1135 353 [c.353]

    Усложнение модели приводит к усложнению конфигурационного множителя (не всегда его можно даже записать, иногда приходится определять приближенно [14]), и появляется новый множитель, в который входит энергия взаимодействия адсорбат — адсорбат и координационное число, характеризующее количество ближайших соседей в решетке [14] [c.26]

    ПО сравнению с двумерной критической температурой и достаточно высокая энергия взаимодействия адсорбат — адсорбат) это может приводить к появлению уступов на изотермах адсорбции [16]. [c.293]

    Этот метод мог бы иметь некоторую ценность, если бы он действительно позволял находить энергию взаимодействия адсорбат — адсорбат. К сожалению, однозначное решение этой задачи невозможно. Хорошо известно, что в общем случае по виду изотермы или кривой теплот адсорбции невозможно отличить влияние неоднородности поверхности от проявления сил отталкивания между адсорбированными молекулами. Столь же неоднозначно истолкование полученных экспериментальных данных и при существовании аттракционных взаимодействий между адсорбированными молекулами. Так, например, если часть катионов в полостях цеолита делокализована и эти катионы обладают некоторой свободой перемещения, то рост адсорбции должен вызывать уменьшение их подвижности, вследствие чего энтропия цеолита будет уменьшаться, а теплота адсорбции (для системы адсорбат — адсорбент) будет увеличиваться с ростом заполнения. Подобно этому любая причина, способная вызвать уменьшение энтропии адсорбента, будет вызывать увеличение теплоты. Таким образом, наблюдаемое увеличение с Т при адсорбции на цеолитах совершенно не обязательно означает только проявление аттракционных взаимодействий. Вследствие этого можно утверждать, что для количе- [c.401]

    Думается, что следует продолжить детализацию теории физической адсорбции с целью приближения ее механизма к реальным адсорбентам и получения лучшего количественного согласия теоретических и экспериментальных данных. Совершенно очевидно, что решение этой задачи представляет большие трудности, связанные с учетом фактора дефективности структуры адсорбентов, влияния кривизны их поверхности на величину адсорбционного потенциала, энергию взаимодействия адсорбат—адсорбат, состояние конденсированных слоев и т. д. [c.6]


    Для изотерм, выпуклых в сторону оси относительных давлений (рис. 40) и характеризующихся с, близкой к нулю, вследствие близких значений энергий взаимодействия адсорбат—адсорбат и адсорбат—адсорбент уравнение БЭТ неприменимо, так как при с, приближающейся к единице, расчет емкости монослоя по графику становится малонадежным. В самом деле, подставляя с=1 в уравнение (3.50), получаем [c.93]

    Свойство температурной инвариантности ХК (Ю) выполняется тем лучше, чем выше температура, меньше плотность катионов или вообще центров специфических взаимодействий (отличных от чисто дисперсионных) в объеме микропор или на поверхности макропористых адсорбентов, меньше разница энергий взаимодействия адсорбат—адсорбат и адсорбат—адсорбент, но во многих случаях расчет на его основе температурной зависимости адсорбции можно проводить лишь в небольших температурных интервалах. В ряде случаев (например, при адсорбции низкокипящих газов на цеолитах) это свойство не выполняется даже в достаточно грубом приближении. В этом и, возможно, других случаях для расчета температурной зависимости адсорбции индивидуальных адсорбтивов лучшие результаты получаются при использовании эмпирически установленного для микропористых адсорбентов свойства— линейной зависимости 1пр = (1/7 ) при одинаковых величинах адсорбции, что требует, конечно, несколько большей экспериментальной информации. Этот вопрос подробно рассмотрен в докладе В. В. Серпинского (см. настоящий сборник). [c.37]

    Приведенные на рис. 3 кривые зависимости дифференциальной теплоты адсорбции для к-бутиламина на гранулированном с каолином катализаторе К-2 и аттапульгите передают зависимость дифференциальных теплот адсорбции от заполнения поверхности и характеризуют, кроме того, распределение кислотных центров по их силе. Кривая 2 имеет перегиб при заполнении поверхности, близком к 0,25 дифференциальная теплота адсорбции проходит через максимум при заполнении около 0,35 и затем падает с ростом заполнения. Объясняют это следующим образом. При заполнении поверхности молекулами адсорбата они взаимодействуют друг с другом с экзотермическим эффектом, что ведет к возрастанию теплоты адсорбции, поскольку энергия взаимодействий адсорбат — адсорбат превышает уменьшающуюся теплоту реакции между адсорбатом и все более и более слабыми поверхностными центрами. При увеличении заполнения уменьшающиеся энергии взаимодействия с поверхностными центрами становятся определяющим фактором, и дифференциальная теплота адсорбции вновь падает. Ход кривой распределения всей энергии при степени заполнения 0,2 и выше нарушается из-за взаимодействия адсорбат — адсорбат. Аналогичное поведение наблюдалось и в других калориметрических опытах, например в опытах с аммиаком, описанных в разд. IV, 1. [c.372]

    Энергия взаимодействия адсорбат — адсорбат [c.472]

    Учет потенциальной энергии взаимодействий адсорбат—адсорбат приводит к уравнениям изотерм адсорбции, содержащим помимо константы Генри, характеризующей энергию взаимодействий адсорбат—адсорбент, другую константу, характеризующую энергию взаимодействия адсорбат— адсорбат. При этом получаются, например, уравнения вида(ХУ1,35) или (XVI, 36) и (ХУП, 46). [c.482]

    Уравнение БЭТ тем лучше описывает изотермы адсорбции, чем больше энергия взаимодействия адсорбат — адсорбент по сравнению с энергией взаимодействия адсорбат — адсорбат, т.е. оно хорошо выполняется при С 1 [70]. [c.301]

    XVII, 16 видно, что наклон изостер изменяется с увеличением 6. По мере заполнения монослоя, благодаря увеличению энергии взаимодействия адсорбат—адсорбат, наклон растет, а при перехо- [c.485]

    В случаях, когда > X,, т. е. энергия взаимодействия адсорбент — адсорбат больше энергии взаимодействия адсорбат — адсорбат, изотерма адсорбции выпукла и относится к типу II или IV (например, адсорбция I4 на силикагеле). Если же энергия взаимодействия адсорбат — адсорбат больше теплоты адсорбции (X > д,), например, при адсорбции воды на графите, ТО изотерма адсорбции вогнута и относится к типу III или V. [c.222]

    Выше были рассмотрены способы приближенной оценки значений Фо в этих простейших случаях. При подстановке в уравнение (XVHI, 47) они приводят к правильному порядку величины константы адсорбционного равновесия. В области более высоких заполнений поверхности надо, во-первых, учесть различия в моделях локализованной и нелокализованной адсорбции и, во-вторых, ввести в расчет новые суммы состояний, связанные с потенциальной энергией взаимодействия адсорбат—адсорбат. Учет локализации сводится к рассмотрению различных конфигураций на поверхности, т. е. числа способов, которым можно разделить общее число мест на поверхности N, на занятые Ni и свободные N,—Na. Это приводит к появлению в выражении для химического потенциала адсорбата (ХУП, 37) конфигурационного множителя Na N,—Na = 0/1—0 вместо Na. Легко видеть, что вследствие этого вместо уравнения Генри получается уравнение Лэнгмюра. [c.482]

    Кроме того, Арановичем и Донахью [83] обнаружено новое явление — поверхностное сжатие газов, адсорбированных на твердых телах. Сильное сродство к поверхности заставляет молекулы адсорбатов приобретать намного большую плотность, чем в обычных жидкостях. В этих условиях молекулы адсорбатов так сжаты, что они отталкиваются друг от друга. На основании экспериментальных результатов и теоретических моделей авторы предложили аппроксимационную модель для адсорбции молекул на поверхности. Эта модель применима как к монослойной адсорбции, так и к первому слою при многослойной адсорбции. Линейная форма новой модели позволяет определить энергию взаимодействия адсорбат — адсорбат в адсорбированном слое из экспериментальных данных. Анализ различных систем (таких как азот, СОг, углеводороды на различных адсорбентах) показывает, что энергия взаимодействий молекула — молекула в адсорбированной фазе вблизи монослойного покрытия положительна, что указывает на отталкивание адсорбат-адсорбат и, следовательно, на то, что адсорбаты являются сжатыми жидкостями. Это должно приниматься во внимание при анализе уравнений состояния для адсорбированной фазы и при использовании адсорбции для характеристики пористых материалов. Также это оказывает влияние на скорости реакций на поверхностях катализаторов. Можно предположить, что концепция емкости монослоя в недалеком будущем будет нуждаться в уточнении или даже в пересмотре, потому что она является функцией энергии взаимодействия адсорбат — адсорбент. [c.302]



Смотреть страницы где упоминается термин Энергия взаимодействия адсорбат адсорбат: [c.500]    [c.40]    [c.293]    [c.61]    [c.458]    [c.458]   
Смотреть главы в:

Курс физической химии Том 1 Издание 2 -> Энергия взаимодействия адсорбат адсорбат

Курс физической химии Том 1 Издание 2 (копия) -> Энергия взаимодействия адсорбат адсорбат


Курс физической химии Том 1 Издание 2 (1969) -- [ c.472 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.472 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбат

Адсорбат энергия взаимодействия

Энергия взаимодействия



© 2025 chem21.info Реклама на сайте