Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбенты микропористые

    Для иллюстрации сложной зависимости величины адсорбции от различных факторов приведем уравнение изотермы адсорбции, полученное М. М. Дубининым для микропористых адсорбентов и паров при любых температурах ниже критической (Т < Ткр)  [c.567]

    Как рассчитать общий объем пор у микропористого адсорбента  [c.63]

    Работами акад. М. М. Дубинина было установлено, что некоторые положения теории Поляни применимы и для микропористых адсорбентов. Эмпирически были получены уравнения характеристической кривой и изотермы адсорбции следующего вида  [c.44]


    Более универсальной является разработанная М, М. Дубининым теория объемного заполнения микропор, получившая широкое признание. По Дубинину, процесс адсорбции микропористыми адсорбентами рассматривается как процесс объемного заполнения микропор поглощаемым веществом. Полученные на основе этой теории уравнения изотермы адсорбции для газов и паров отражают зависимость равновесия от структуры пор адсорбента и пригодны для широкого диапазона температур. [c.567]

    В первой части этого курса были рассмотрены различные по химической природе и геометрической структуре адсорбенты, применяемые в молекулярной газовой и жидкостной хроматографии от одноатомного адсорбента с однородной плоской поверхностью графитированная термическая сажа) до непористых и микропористых солей, кристаллических микропористых и аморфных оксидов (на примере кремнезема) и органических пористых полимеров, а также способы адсорбционного и химического модифицирования адсорбентов. При этом были рассмотрены химия поверхности и адсорбционные свойства этих адсорбентов — поверхностные химические реакции, газовая хроматография, изотермы и теплоты адсорбции и происходящие при модифицировании поверхности и адсорбции изменения в ИК спектрах. Уже из этой описательной части курса видно, что свойства системы газ — адсорбент в сильной степени зависят как от химии поверхности и структуры адсорбента, так и от природы и строения адсорбируемых молекул, а также от их концентрации и температуры системы. Приведенные экспериментальные данные позволили рассмотреть и классифицировать проявле- [c.126]

    Анализ нефтяных газов. Для анализа нефтяных газов пользуются адсорбционной газовой хроматографией, применяя адсорбенты с достаточно развитой поверхностью — тонкопористые силикагели, цеолиты, микропористые полимеры..  [c.115]

    Особенности адсорбции в микропорах. Из анализа адсорбции паров веществ на дегидратированных кристаллах цеолитов могут быть получены важные сведения о характере заполнения адсорбционного пространства. Радиусы больших полостей цеолитов типов А и X составляют 5,5—б А, и поэтому цеолиты являются типичными микропористыми адсорбентами. Но, в отличие от других адсорбентов, микропористая структура цеолитов обусловлена их кристаллическим строением и поэтому является строго определенной. Для цеолитов А и X можно из рентгеноструктурных данных вычислить формальные геометрические удельные поверхности алюмосиликатных скелетов, т. е. стенок микропор [6]. Для кристаллов цеолитов СаА формальные удельные поверхности составляют 1640 ж /г, а для NaX— 1400 м 1г. Отношения из вычисленных удельных поверхностей к обычно применяемым молекулярным площадкам адсорбируемых веществ выражают расчетные емкости мономолекулярных адсорбционных слоев (о ). В табл. I эти величины сравниваются с экспериментальными предельными величинами адсорбции ао, отвечающими полному объемному заполнению полостей цеолитов [7]. [c.7]


    Дубининым с сотрудниками [219, 220] было предложено различать два структурных типа адсорбентов микропористые — первого структурного типа с повышенным адсорбционным потенциалом и относительно крупнопористые — второго структурного типа, у которых эффект повышения адсорбционных потенциалов ослаблен. Теория привела к следующим уравнениям адсорбции. [c.291]

    Произведем теперь мысленно своеобразное обращение нашей системы. Пусть дисперсионной средой служит твердое тело, а дисперсной фазой — пустоты в нем (поры). Переход от крупнопористых (тем более — от непористых) сорбентов к адсорбентам микропористым также связан вначале с накоплением количественных различий, которые неизбежно приводят к различиям качественным исчезает поверхность раздела фаз, и система сорбент — сорбат становится в известном смысле однофазной. [c.232]

    Если адсорбент микропористый, то адсорбционную систему можно рассматривать как раствор адсорбата в адсорбенте. Поэтому (как принято в термодинамике растворов ) А О и [c.13]

    В настоящее время применяются разнообразные неорганические адсорбенты как немодифицированные, так и с химически или адсорбционно модифицированной органическими веществами по-верхностью, а также чисто органические адсорбенты — пористые полимеры. Геометрическую структуру адсорбентов можно изменять в очень широких пределах —от непористых адсорбентов с удельной поверхностью s порядка 1—10 и макропористых с s порядка 10—100 м /г и размерами пор d>100 нм, до микропористых с S 1000 м /г и d< 10 нм. [c.14]

    J Адсорбция жидкости на микропористом адсорбенте вдоль линии равновесия жидкость — пар. Сообщ. 1//Изв. АН СССР. Сер. хим. 1983. № 3. С. 493—498. [c.245]

    Теория объемного заполнения микропор позволяет по одной экспериментальной изотерме адсорбции, измеренной при некоторой температуре или по одной изобаре адсорбции рассчитать изотермы этого же вещества для других температур. Проведенные различными авторами исследования по адсорбции веществ на микропористых углеродных адсорбентах в рамках ТОЗМ давали хорошее совпадение расчетных и экспериментальных данных, когда предельный объем адсорбционного пространства, оцененный по бензолу, распространялся на вещества, молекулы которых близки по размерам молекулам стандартного вещества. Как правило, предельный объем адсорбционного пространства Wo считается постоянным, а плотность адсорбированной фазы лри пересчете на температуры ниже температуры кипения полагается равной плотности нормальной жидкости, при температуре выше температуры кипения рассчитывается по методу Николаева— Дубинина [6]. [c.26]

    Избирательность адсорбции определяется природой подлежащих разделению газов и паров. При малых давлениях решающим фактором, определяющим избирательность, является сродство к поверхности адсорбента. Чем больше разница между сродствами адсорбируемых газов к поверхности адсорбента, тем легче разделить газовую смесь. Для микропористых адсорбентов дополнительную роль играет молекулярно-ситовой эффект. При наступлении конденсации в переходных порах с увеличением давления или понижением температуры основное влияние на разделение начинает оказывать природа газов и, конечно, их способность к кон-денсации. Чем при меньшем давлении газ начинает конденсироваться, тем СИ лучше будет адсорбироваться па пористом адсорбенте. Эта закономерность иллюстрируется данными, приведенными в табл. П1. 1. [c.144]

    Цеолиты являются типичными микропористыми адсорбентами. Предельные величины адсорбции А, я цеолитов отвечают объемному заполнению их микропор 222]. Изучение изотерм адсорбции различных паров на цеолитах позволило установить объемный характер заполнения свободного адсорбционного пространства микропор при постоянстве мольных объемов адсорбированных веществ [223]. [c.292]

    Исследования показали, что изотермы адсорбции, получаемые на микропористых адсорбентах (имеющих поры радиусом —Л Х X10" м), формально относятся к I типу, но теория Лангмюра в этих случаях неприменима. [c.44]

    Если твердым телом является непористый или крупнопористый адсорбент, то при адсорбции ПАВ одного гомологического ряда нз полярного растворителя соблюдается правило Траубе каждый последующий член ряда адсорбируется лучше предыдущего. На микропористых адсорбентах это правило обращается обнаруживается обратная зависимость меладу адсорбционной способностью веществ и размерами неполярной части молекулы. [c.55]

    Другой метод заключается в определении предельно адсорбированных адсорбентом объемов жирных кислот или спиртов из водных растворов. Для некоторых адсорбентов и некоторых обесцвечивающих углей, в которых очень малых пор практически нет, предельная адсорбция, выраженная в молях и достигаемая при достаточно больших равновесных концентрациях, не зависит от длины углеродной цепи молекул. Это говорит о мономолекулярной адсорбции, наступающей к моменту насыщения поверхности адсорбента. Для микропористых адсорбентов предельная величина адсорбции уменьшается с ростом длины углеводородного радикала. [c.95]


    Назначение твердого носителя в ГЖХ — удерживать жидкую фазу на своей поверхности в достаточном количестве в виде однородной пленки. Поэтому он должен обладать и достаточной для этого поверхностью, причем последняя должна быть макропористой, так как микропористость приводит к эффекту адсорбции и связанной с этим нелинейностью изотермы сорбции и асимметрии пиков, увеличению времени удерживания, невоспроизводимости и изменению порядка выхода компонентов на хроматограмме. Поэтому применение активных адсорбентов (гелей, активированных углей) в качест- [c.195]

    Основными параметрами пористой структуры адсорбентов являются пористость (объем пор), размер пор, удельная поверхность, размеры зерен. По пористой структуре их можно разделить на микропористые (активные угли, цеолиты — размеры пор менее 0,15 нм), мезопористые (размеры пор от [c.231]

    Еще большей удельной поверхностью (до 1000 м /г) обладают микропористые углеродные адсорбенты, получающиеся при термическом разложении некоторых полимеров. Из-за очень небольших размеров пор эти адсорбенты называют [c.27]

    Одна из важнейших характеристик адсорбентов — пористость. Объемной пористостью называют отношение суммарного объема пор к общему объему дисперсной системы. Необходимо подчеркнуть, что понятие пористости, широко используемое для характеристики и классификации адсорбентов, имеет различный смысл в зависимости от применения его к отдельным частицам (зернам) адсорбента или же к образованной этими частицами структуре. Так, непористые (сплошные) частицы даже при плотнейшей их упаковке, образуют пористую структуру — порошковую диафрагму, — поры которой являются промежутками между зернами. В зависимости от размера частиц эти структуры могут быть мак-ро- или микропористыми. [c.165]

    Изотермы адсорбции на промышленных микропористых адсорбентах по классификации С. Брунауера [3] относятся к первому типу, т. е. функция у = F(u) в безразмерных переменных у = а/ао, и = / q является выпуклой в интервале [О, 1]. В настоящее время для аналитического описания экспериментальных изотерм адсорбции известно большое количество уравнений изотермы Фрейндлиха, Лангмюра, БЭТ, Хилла — де-Бура, Фольмера, Кисарова, Дубинина — Астахова и др. Каждое из этих уравнений с той или иной степенью точности отражает равновесные характеристики системы адсорбент — адсорбат. Зачастую одни и те же экспериментальные данные в широком интервале заполнения адсорбционного пространства удовлетворительно описываются различными уравнениями [6], и выбор аналитического вида функции у F(u) определяется либо простотой выражения, либо приверженностью исследователя к тому или иному уравнению, либо возможностью получить какую-то дополнительную информацию об изучаемой системе характеристическую энергию адсорбции, предельный объем микропор, ширину щелевой поры, удельную поверхность адсорбции и т. п. [c.232]

    В заключение следует сказать несколько слов о современных представлениях, развиваемых академиком Дубининым и его учениками . Согласно этим представлениям, понятие удельной поверхности с ростом дисперсности вырождается и не применимо к высокодисперсным адсорбентам, например углям, где половина атомов С свободно контактирует с адсорбатом. Понятие границы раздела фаз (без которого не имеет смысла 5о) исчезает (см. главу I) в таких системах, и они с большим основанием могут трактоваться как гомогенные. В этом случае адсорбент может рассматриваться как один из компонентов, изменяющих, в процессе адсорбционного взаимодействия, свой химический потенциал На. Термодинамическая трактовка, основанная на этих представлениях, приводит авторов к обобщенному уравнению, которое дает два частных решения. Для случая макропористых систем, где адсорбент является лишь источником силового поля, не изменяясь в процессе адсорбции, Д Иа = О, 5 = о и решение сводится к уравнению адсорбции Гиббса. Для другого случая— микропористой системы, 5о = О, А 1а ф 0. При этих условиях решением оказывается уравнение Гиббса—Дюгема, применимое к гомогенным объемным фазам. Концепция вырождения о хороша согласуется с возможностью гомогенной трактовки дисперсных систем, рассмотренной нами при обсуждении правила фаз. Эти представления требуют дальнейшего развития, поскольку адсорбент не является обычным компонентом, ввиду жесткой локализации его в определенной части системы, однако направление это несомненно весьма перспективно, особенно для понимания сущности дисперсного состояния. [c.168]

    Каковы особенности адсорбции на микропористых адсорбентах и какая теория используется для описапия адсорбции ца этих сорбентах  [c.63]

    В каждом методе применяются соответствующие мембраны. Различия в прохождении веществ через мембраны могут быть связаны как с равновесными, так и с кинетическими свойствами разделяемой системы. По этим признакам мембраны подразделяют на фильтрационные (полупроницаемые) и диффузионные. Первые из них способны разделять вещества в равновесных условиях, размер их пор соизмерим с размерами проникающих частиц или молекул. Диффузионные мембраны обычно применяют для разделения газов методом газовой диффузии. Размер иор у них должен быть таким, чтобы обеспечить кнудсеновский поток газов через мембраны. Фильтрационные мембраны в свою очередь можно классифицировать на макропористые, переходнопористые и микропористые (подобно адсорбентам). Микропористые Мембраны могут быть нейтральными или нонитовьши. [c.238]

    Промышленными адсорбентами являются пористые твердые тела, имеющие большую удельную поверхность, т. е. величину поверхности, приходящуюся на единицу массы (м /г) или единицу объема (м /см ) адсорбента. По размеру пор различают микро-, переходные и макропоры. Микропоры имеют эффективные радиусы в пределах от 0,5 до 1,5 нм (соизмеримые с молекулами адсорбируемых веществ). Те же размеры имеют обычно простенки между соседними порами, поэтому все молекулы адсорбента и поглощенного вещества во всем пространстве микропор находятся во взаимодействии. Так как процесс адсорбции сводится к заполнению микропор адсорбатом, то основным параметром является их объем. Переходные поры (эффективные радиусы от 1,5—200 нм) представляют собой как бы каналы, транспортирующие адсорбируемое вещество к микропо-рам. В этих порах адсорбционные силы проявляются не во всем объеме, а лишь на небольшом расстоянии от стенок, поэтому характеристическими параметрами являются, помимо объема, удельная поверхность пор (м г) и их распределение по размерам. Макропоры (эффективные радиусы выше 200 нм) имеют очень небольшую удельную поверхность (порядка 0,5—2 м г), поэтому адсорбцией на их поверхности можно пренебречь они играют роль подводящих каналов к переходным порам и микропорам. Относительные объемы и удельные поверхности каждого из трех указанных видов пор обусловлены природой адсорбента. В зависимости от преобладания того или иного вида пор различают адсорбенты микропористые, переходно-пористые и макропористые. [c.614]

    Теория БЭТ несмотря на условность предпосылок позволила вывести уравнение изотермы адсорбции, имеющей S-образную форму. Вид этой изотермы характерен для полимолекулярной адсорбции. При значениях давления, далеких от давления насыщенного пара при данной температуре, и значении константы равновесия полимолекулярной адсорбции С>1 уравнение S-образной изотермы переходит в уравнение изотермы адсорбции Лангмюра. Таким образом, адсорбция в каждом слое подчиняется уравнению Лангмюра. Существует пять основных типов изотермы адсорбции (рис. 109). Изотермы типа I характерны для микропористых адсорбентов выпуклые участки на изотермах типов И и IV свидетельствуют о присутствии в адсорбенте наряду с макропорами и микропор. Менее крутой начальный подъем кривых адсорбции может быть связан с наличием моно- и полимолекулярной адсорбции для адсорбента переходнопористого типа. Начальные вогнутые участки изотерм типов И1 и V характерны для систем адсорбент — адсорбат, когда взаимодействие их молекул значительно меньше межмолекулярного взаимодействия молекул адсорбата, вызванного, например, появлением водородных связей. Теория БЭТ является наиболее полной тео(рией физической адсорбции. [c.257]

    Наиболее мелкие поры адсорбентов—микропоры—соизмеримы по размерам с адсорбируемыми молекулами. В связи с этим последовательно адсорбирующиеся в микропорах молекулы не образуют адсорбционных слоев и адсорбция в микропорах характеризуется объемным заполнением адсорбционного пространства микропор. Наибольшие успехи при описании и расчете изотерм индивидуальной адсорбции на микропористых адсорбентах достигнуты в рамках теории объемного заполнения микропор (ТОЗМ), развитой академиком М. М. Дубининым с сотрудниками [6]. [c.20]

    Более того, рассмотренные методы расчета совершенно не отражают влияния физической и химической природы адсорбента на плотность адсорбата. Многочисленные экспериментальные исследования, проведенные в институте физической химии АН СССР Серпипским В. В. с сотрудниками, также показывают, что адсорбат в микропористом адсорбенте — особое состояние вещества и критические параметры равновесного газа не определяют полностью поведение вещества, находящегося в адсорбированном состоянии. [c.31]

    Рассмотренная математическая модель внутридиффузион-ного переноса в гранулах адсорбента предполагает, что массоперенос в твердом теле полностью определяется некоторым постоянным коэффициентом диффузии. Действительно, проникание адсорбата внутрь зерна адсорбента — процесс диффузионный, а под коэффициентом диффузии D понимают количество вещества, диффундирующего в единицу времени через 1 см поверхности при градиенте концентрации, равном единице. Естественно, что нельзя ожидать, чтобы один постоянный коэффициент диффузии описал те явления, которые происходят в процессе переноса адсорбата в таких сложных пористых структурах, которыми обладают гранулы любого промышленного адсорбента. Величина D должна рассматриваться как эффективный коэффициент диффузии, значение которого зависит от структуры пор и вклада в массоперенос различных транспортных механизмов, таких как нормальная или объемная диффузия, молекулярная или кнудсенов-ская диффузия и поверхностная диффузия. Для того чтобы учесть негомогенность структуры адсорбентов, при экспериментальном и теоретическом изучении кинетики адсорбции микропористыми адсорбентами в настоящее время широко используется представление о бипористой структуре таких адсорбентов [18], которое предполагает два предельных механизма массопереноса диффузия в адсорбирующих порах (например, в кристаллах цеолита) и перенос в транспортных порах. [c.50]

    В настоящее время для описания адсорбционного равновесия на микропористых адсорбентах нашли применение уравнения теории объемного заполнения микропор (ТОЗМ) [6] и осмотической теории адсорбции [3]. Результаты этих теорий, имеющих термодинамический характер, с высокой точностью описывают экспериментальные данные по адсорбционному равновесию на адсорбентах с различными свойствами. Однако следует отметить, что некоторые уравнения изотерм адсорбции, предложенные в указанных теориях, не имеют строгого теоретического обоснования. Решение задачи теоретического обоснования предложенных уравнений изотерм адсорбции, имеющих различную математическую структуру, позволяет обобщить описание единого физического явления [79]. [c.223]

    Исследованные н-иарафины характеризуются тем, что молекулы их неполярны, не имеют кратных связей и, следовательно, адсорбционное равновесие системы н-парафин - цеолит определяется дисперсионным взаимодействием. Для описания результатов исследования равновесной адсорбции высокомолекулярных н-парафинов в области высоких температур (превышающих Ткр ) на цеолите 5А применены уравнения теории объемного заполнения, разработанные М.М. Дубиншшм для микропористых адсорбентов [12]. [c.11]

    Ранее отмечалось, что размеры ыикропор соизмеримы с разме рами адсорбируемых молекул. В отлпчпе от ленгмюровского моиослоя в микропорах молекулы, расположенные главным образом вдоль поры, взаимодействуют друг с другом подобно взаимодействию прп образовании полимолекулярного слоя в отличие же от последнего большинство молекул в микропорах находится в непосредственном контакте со стенками поры. Поэтому ни теория БЭТ, ИИ теория Ленгмюра для процесса адсорбции микропористыми телами не применимы. Имеется в виду, конечно, не формальное применение уравнений, а, главным образом, получение правильных значений постоянных параметров уравнений, имеющих определенный физический смысл. В микропорах происходит объемное заполнение адсорбционного пространства, и поэтому оказалось более удобным взять за основной геометрический параметр адсорбента не поверхность, а объем микропор. [c.140]

    Особенности адсорбции на микропористых телах проявляются в их избирательном действии. Избирательность, или селективность, микропористых адсорбентов существенно выше, чем переходнопористых, благодаря тому, что большинство адсорбированных молекул взаимодействует непосредственно с поверхностью адсорбента. В более крупных порах такое взаимодействие характерно только для первого слоя. В последующих же слоях взаимодействие на зависит от природы адсорбента, а определяется только природой адсорбата. Кроме этой особенности у микропор может проявляться так называемый ситовой эффект, заключающийся в том, что адсорбироваться могут только те молекулы, размеры которых меньше размеров микропор или равны им, в соответствии с чем все микропористые адсорбенты (не только цеолиты) часто называют молекулярными ситами. [c.140]

    Использовав указанные положения теории Поляни и обобщив большой экспериментальный материал, М. М. Дубинин с сотр. йришел к выводу о возможном применении функции распределения Вейбула в качестве функции распределения адсорбционного Объема по значению потенциала для описания адсорбции на микропористых адсорбентах. Применительно к распределению степени заполнения по адсорбционному потенциалу функцию распределения Вейбула представляют соотношением [c.142]

    Данная книга отражает в определенной мере специфику работы кафедры коллоидной химии на химическом факультете МГУ. Это проявляется, с одной стороны, в особом внимании авторов к разделам, отвечающим области научных интересов кафедры, и, с другой стороны, в стремлении к преодолению, по возможности, дублирования материала по тем смежным разделам, которые изучаются на кафедрах физической химии, электрохимии, высокомолекулярных соединений. Это относится, в частности, к таким вопросам, как адсорбция твердой поверхностью (микропористыми адсорбентами) из газовой фазы строение плотной части двойного электрического слоя, электрокапиллярные явления специфика поведения дисперсий ВМС и некоторые другие. В названных случаях вопрос затрагивается лишь в той мере, в которой материал является коллоидно-химическим по существу и совершенно необходим по логике построения курса. Интересующиеся найдут подробности в цитируемых руководствах и пособиях, в том числе в зарекомендовавших себя учебниках Д. А. Фридрихсберга, С. С. Воюцкого, А. Д. Ше-лудко, А. Г. Пасынского, а также в новой монографии А. Адамсона. Авторы полагают, что наличие ряда пособий, отражающих научное лицо и педагогический опыт коллоидно-химических школ, должно способствовать глубокому, всестороннему и непредвзятому изучению этой важной, интересной области химической науки. [c.4]


Библиография для Адсорбенты микропористые: [c.247]   
Смотреть страницы где упоминается термин Адсорбенты микропористые: [c.10]    [c.34]    [c.223]    [c.131]    [c.132]    [c.144]    [c.31]    [c.231]    [c.221]   
Основы адсорбционной техники (1976) -- [ c.29 ]

Адсорбция, удельная поверхность, пористость (1970) -- [ c.223 , c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционное равновесие в системе газ (пар) - микропористый адсорбент

Изотермическая десорбция из слоя микропористых адсорбентов

Изучение свойств адсорбентов Астахов, М. М. Дубинин, П. Г. Романков. Основы инженерного расчета адсорбционных равновесии для микропористых адсорбентов

Кинетика адсорбции микропористыми адсорбентами при постоянном давлении и постоянном объеме

Определение удельной поверхности микропористых адсорбентов

Потенциальная энергия микропористые адсорбенты

Серпинский В. В Состояние физически адсорбированных веществ в микропористых адсорбентах

Теоретические вопросы адсорбции на цеолитах и исследование их свойств Дубинин. Особенности адсорбции паров различных веществ на цеолитах как на микропористых адсорбентах

Термодиффузия микропористые адсорбенты

Физическая адсорбция газов микропористыми адсорбентами

Характеристика микропористых адсорбентов на основе теории объемного заполнения микропор



© 2024 chem21.info Реклама на сайте