Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некогерентное излучение

    Наиб, специфично фотохим. действие лазерного излучения в ИК области, поскольку создать в этой области длин волн источники некогерентного излучения, сравнимые по мощности с лазерами и позволяющие осуществлять фотолиз, практически невозможно. Под действием лазерного ИК излучения стимулирование хим. процессов в газах происходит путем резонансного возбуждения колебат. степеней свободы молекул. Подбором условий (давление газа, интенсивность и частота лазерного излучения) удается достичь высокой сверхравновесной концентрации колебательно возбужденных молекул и осуществить их диссоциацию (фрагментацию). Достаточно коротким (< 10 с) и ю тенсивным [c.565]


    Случай полностью когерентного и некогерентного излучения встречается редко, на практике всегда наблюдается частично когерентное освещение. Оно имеет место даже при полном согласовании апертур осветительной системы и объектива, т. е. при полном заполнении входного зрачка объектива. При уменьшении степени заполнения зрачка степень когерентности б увеличивается, а при заполнении зрачка в виде точки освещение приближается к когерентному случаю. Этим приемом начинают пользоваться на практике при конструировании современной фотолитографической аппаратуры, причем стремятся выбрать оптимальное заполнение зрачка, оптимальную степень когерентности [32]. [c.30]

    В первом способе излучение просвечивающего источника модулируют с определенной частотой. На ту же частоту настраивают узкополосный усилитель фототока приемника излучения. Это позволяет практически полностью избавиться от помех со стороны немодулированного излучения поглощающего объекта. Подобного рода схемы широко применяются в атомно-абсорбционном анализе [15]. Недавно был предложен второй способ, основанный на свойстве голограмм правильно передавать яркость объекта, освещенного когерентным светом, без существенных помех со стороны некогерентного излучения [13.1]. Схема установки для голографического измерения поглощения показана на рис. 13.2. [c.334]

    Свет от лазера 1 разделяется на два пучка с помощью системы зеркал 2 и 3. Один из пучков рассеивается матовым стеклом 4 и, пройдя через объект 5, попадает на фотопластинку 6. Здесь он встречается с другим пучком 7 и, интерферируя с ним, образует на фотопластинке сложный интерференционный узор. Проявленная пластинка с зарегистрированной на ней интерференционной структурой называется голограммой. Ее помещают в исходное место и освещают пучком 7, при этом восстанавливается световая волна, выходившая из объекта при получении голограммы. Поскольку некогерентное излучение самого объекта не принимало участия в образовании интерференционного узора на голограмме, то соответствующая часть световой волны не восстановится. [c.334]

    Однако в арсениде галлия первоначально испускаемые в процессе рекомбинации фотоны имеют различные энергии (частоты) и направления движения, а распределение их по времени хаотично такие фотоны создают некогерентное излучение. Большая часть [c.91]

    Некогерентное излучение для рентгеновского анализа непригодно, ибо не может интерферировать. Не давая диффракционной картины, это излучение уменьшает интенсивность когерентного излучения, ибо [c.193]

    В ряде систем проекционной литографии принято Оопт = 0,7, что, с одной стороны, повышает крутизну пограничной кривой, дает при некоторых заданных пространственных частотах большие значения ОПФ (ЧКХ), а с другой стороны, еще не приводит к значительным осцилляциям интенсивности (что может, например, дать оконтуривание изображения — двойной край ), резонансным эффектам, характерным для когерентного освещения. Учет подобных эффектов, ограничивающих возможности фотолитографии, становится особенно важным при использовании лазеров в качестве источников излучения для формирования микроизображений [33]. При использовании лазеров в качестве мощных источников монохроматического излучения основной проблемой является именно уменьшение когерентности, существенно ухудшающей ( когерентный шум ) качество изображения и приводящей к резонансным эффектам в изображении, что особенно опасно при передаче сложной конфигурации. Снижение пространственной когерентности излучения может быть осуществлено различными способами—от временного усреднения путем вращения рассеивающих компонентов или сканирования по зрачку [33] объектива до создания специальных, например эксимерных, лазеров, дающих некогерентное излучение [21, 34]. [c.30]


    Последние всегда существуют, в том числе при абсолютном нуле, и проявляют себя в виде вполне доступных регистрации излучений в ИК, видимом и УФ диапазонах. В сипу независимости (некогерентности) излучения разными молекулами и излучения в разных частотных диапазонах полный спектр излучения тел весьма хаотичен и поэтому называется флуктуацион-ным полем. Для пондеромоторного (способного вызвать механическое перемещение тел) действия флуктуирующих, т. е. случайных по фазе и ам1шитуде полей необходима синхронизация фаз электромагнитного излучения партнеров по взаимодействию. [c.618]

    Система накачки предназначена для преобразования энергии источника электрического питания 8 в энергию ионизированной активной среды 3 лазера. Накачка в различных лазерах может производиться электрическим разрядом (газовые), вспомогательным оптическим некогерентным излучением (твердотельные и жидкостные) и путем воздействия электрическим током — иижекцией электронов в р-и-переход (полупроводниковые). В газовых лазерах (рис. 6.1) чаще всего накачка осуществляется электрическим разрядом, для чего в нем устанавливаются два электрода — катод 7 и анод 9, между которыми подается напряжение от источника питания (постоянное или СВЧ с частотой около 200 МГц). Атомы гелия возбуждаются при соударениях с быстрыми электронами и, сталкиваясь с атомами неона, передают им свою энергию. Индуцированное излучение [c.227]

    Особое место в методах оптической накачки активных сред ИК-лазеров занимает накачка некогерентным излучением импульсной лампы, ставшая возможной благодаря использованию межмолекулярного электронно-колебательного переноса энергии Е—V-nepeHo ) [87—89]. В этом явлении, механизм которого далеко еще не ясен, электронно-возбужденный атом в столкновениях с молекулой отдает свою энергию на возбуждение молекулярных колебаний, причем иногда с довольно высокими вероятностью и селективностью. Эффективность такого преобразования энергии зависит прежде всего от точности резонанса между возбужденным электронным уровнем атома и не слишком высоко возбужденным колебательным уровнем молекулы. Поэтому атом брома в электронном состоянии 4 Pi/2 с энергией 3685 см , выбранный авторами работ [87—89] в качестве донора энергии, — хороший партнер в процессе электронно-колебательного переноса энергии. [c.184]

    Если образец представляет собой монокристалл, то в результате дифракции рентгеновских лучей на кристаллической решетке на помещенной за образцом фотопленке (так, чтобы плоскость ее была перпендикулярна направлению падающего луча) появляется система пятен — точечных рефлексов, соответствующих отражениям от разных систем плоскостей (точечная рентгенограмма). При использовании монохроматического рентгеновского излучения (X = onst) для получения отражения от всех плоскостей монокристалла, образец вращают внутри полостй, образованной фотопленкой, свернутой в цилиндр. Если образец состоит из беспорядочно ориентированных кристалликов, то на плоской пленке, расположенной за образцом, получается система кольцевых рефлексов, порошковая рентгенограмма, или рентгенограмма Дебая — Шерера. При рассеянии рентгеновских лучей аморфным веществом, т. е. в отсутствие дальнего порядка, возникают широкие диффузные кольца (аморфные гало). Положение рефлексов дает возможность, используя уравнение (26), рассчитать межплоскостные расстояния для главных систем плоскостей в кристалле. Кроме того, существует специальная система приемов, позволяющая определить тип кристаллографической решетки и параметры элементарной ячейки. Однако часто рентгенограммы содержат недостаточную для этого информацию, и тогда при их расшифровке решают обратную задачу — выясняют, удовлетворяет ли дифракционная картина некоторой заданной структуре решетки. Интенсивность рефлексов различного порядка позволяет судить о расположении атомов и групп атомов в узлах кристаллографической решетки. Ширина каждого рефлекса А9 определяется степенью отклонения условий рассеяния от идеальных. Эти отклонения могут быть связаны со схемой прибора, некогерентностью излучения и т. д. Их можно учесть с помощью системы специальных попра-вок Более существенным, особенно для полимерных кристаллов, является уширение рефлекса вследствие ограниченных размеров отдельных кристаллов D и иска жений кристаллографической решетки, вносимых ра ного рода дефектами. При использовании рентгеновск лучей, для которых 0,5 — 2,5 А заметное увеличение [c.59]

    Этим люминесценция отличается от вынужденного (индуцированного) излучения, получаемого в оптических квантовых генераторах (лазерах). Вынужденное излучение (ему также отвечает переход 3 на рис. 1) происходит под действием света, частота которого отвечает расстоянию между основным и воз-бужденнььм уровнями. Обычно такой свет вызывает преимущественно переход электронов в возбужденное состояние, т. е. поглощается. Но при создании так называемой инверсной заселенности , когда специальными мерами ( накачкой ) на возбужденный уровень переводится большая часть электронов (для этого время жизни их на таком уровне должно быть достаточно велико), вероятность обратного перехода под действием фотонов оказывается больше вероятности поглощения, и происходит одновременное испускание света всеми излучателями. Вследствие этого индуцированное излучение когерентно. Напротив, люминесценция является спонтанным некогерентным излучением. [c.6]


    Согласно уравнению Вульфа—Брэгга при отражении рентгеновых лучей кристаллом постоянство периодов идентичности трансляционных групп обеспечивает возможность совпадения дифрагированных волн по фазе и очень значительного взаимного усиления когерентного излучения в процессе интерференции. При этом доля некогерентного излучения относительно ничтожна и в рентгенографии кристаллов не играет роли (кроме флуоресцентного излучения, см. П. 12). [c.197]

    Антимониды, арсениды и фосфиды вдохнули новую жизнь в приемники инфракрасных лучей, высокотемпературные силовые диоды, источники когерентного и некогерентного излучения, фотоэлементы, детекторы эффекта Холла, туннельные диоды и другие приборы. Исследования Б. М. Вула, Л. Н. Наследова и других советских физиков показали, что у арсенида галлия и подобных ему полупроводников при низких температурах проявляются свойства квантового генератора радиоволн оптического диапазона. Полупроводниковые лазеры имеют преимущества перед лазерами типа рубина, их к. п. д. близок к 100%. [c.188]


Смотреть страницы где упоминается термин Некогерентное излучение: [c.600]    [c.644]    [c.69]    [c.15]   
Введение в теорию комбинационного рассеяния света (1975) -- [ c.31 , c.119 ]




ПОИСК







© 2025 chem21.info Реклама на сайте