Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциаты молекулярные

    Данные спектрофотометрических исследований образцов элементного фосфора в различных растворителях, а также в присутствии галогенидов алюминия свидетельствуют об образовании ассоциатов молекулярного фосфора, которые затем участвуют в реакциях образования неорганических полимеров. [c.148]

    Водородная связь представляет собой взаимодействие между функциональной группой А — Ни атомом или группой атомов в, принадлежащими одной и той же или разным молекулам. В первом случае водородная связь называется внутримолекулярной, во втором — межмолекулярной. Для межмолекулярной водородной связи характерно образование ассоциатов (молекулярных комплексов) определенного состава, существенную роль при этом играет атом водорода [I]. [c.218]


    Влияние ассоциатов на светорассеяние можно проиллюстрировать следующим примером . Если в растворе тетрагидрофурана (без ассоциатов) молекулярные веса двух фракций, определенные светорассеянием, составляли 205 ООО и 167 ООО, то в метилэтилкетоне для этих же фракций молекулярные веса соответственно были 633 ООО и 210 ООО. При нагревании растворов наблюдалось некоторое уменьшение светорассеяния (так же как описано в работе ). [c.250]

    Типичный ассоциат, молекулярный ион 0 , наблюдался экспериментально в различных галогенидах щелочных металлов [89[. Он занимает места галогена, причем его ось параллельна направлению [1101 в кристалле. Формально этот ион можно рассматривать как ассоциат Oi и О , однако следует отметить, что в реальном дефекте оба кислорода эквивалентны. Равновесие между этим центром и образующими его простыми дефектами еще не изучено. [c.220]

    Молекулярная масса ГК-ассоциата воды, а.е. Число молекул воды в ГК-ассоциате Молекулярная масса ГК-ассоциата ВОДЫ, а.е. Число молекул воды в ГК-ассоциате, а.е [c.103]

    Рассмотрение энтропии воды в качестве объекта для расчета структурной модели воды показывает, что при использовании зависимости энтропии образования углеводородов, ) от их молекулярной массы (рис. 3.9), величине энтропии воды, равной 188,847 Дж/моль, соответствует ГК-ассоциат молекулярной массой 17 а.е.. Следовательно энтропия образования воды определяется одной ее структурной единицей (молекулой воды). [c.113]

    Адсорбция ПАВ усиливается в результате образования ионных или молекулярных ассоциатов в адсорбционном слое, а также в присутствии минеральных солей в растворе вследствие уменьшения ККМ, снижается с увеличением pH раствора. [c.218]

    Одним из возможных факторов, определяющих высокую склонность асфальтенов к ассоциации и способствующих стабилизации надмолекулярных структур является наличие в них устойчивых свободных радикалов. Наличие свободных радикалов обуславливает явление парамагнетизма, свойственное асфальтенам. Установлено,, что между степенью ароматичности и количеством парамагнитных центров наблюдается прямолинейная зависимость. Концентрация парамагнитных частиц у асфальтенов имеет порядок Ш пмч/г. При средней молекулярной массе асфальтенов около 2000 содержание парамагнитных фрагментов составляющих молекул может достигать до 40% на ассоциат [21]. В смолах их содержание не более 2% от общего числа свободных радикалов, обнаруживаемых в исходном остатке [22]. [c.25]

    Очевидно, существует такое, состояние системы, когда количество ассоциатов и сложных структурных единиц минимально, размеры их незначительно отличаются от размеров молекул и частиц основной массы дисперсионной среды, т. е. система находится в состоянии, характерном для истинных молекулярных растворов. Или, применяя терминологию физико-химической механики, система находится в активном состоянии. [c.27]


    Межмолекулярные водородные связи могут образовываться между молекулами одного и того же вещества и разных веществ, а также между молекулами ПАВ и растворителя [217]. В результате такого взаимодействия изменяются важнейшие физико-химические свойства исходных соединений увеличивается молекулярная масса в зависимости от разбавления и типа разбавителя, образуются ассоциаты с аномалией температур плавления и кипения, может измениться растворимость ПАВ. [c.204]

    Процесс синтеза бутадиен-стирольных статистических каучуков может осуществляться в батарее из двух и более аппаратов, соединенных последовательно. Следует учитывать, что вязкость живого ассоциированного полимера быстро увеличивается как за счет повышения содержания полимера в растворе, так и за счет молекулярной массы, которая непрерывно растет с повышением конверсии мономеров. Вязкость живого ассоциированного полимера с молекулярной массой каучука (Зн-3,5)-10 при его содержании в растворе около 15% (масс,) достигает 20—40 Па-с. При дезактивации (разрушении литийорганических концевых групп) вязкость раствора уменьшается в несколько раз за счет распада ассоциатов. [c.276]

    Образование ассоциатов обеспечивает интенсивный перенос активного центра реакции роста цепи, что приводит к регулированию молекулярной массы и образованию полимеров с узким [c.415]

    Молекулярная масса входящих в битум соединений колеб лется в широких пределах. Причем если для смол нет сущест венного расхождения результатов, полученных разными исследо вателями, то для асфальтенов расхождения находятся в преде лах 2000—300 000. Как отмечает С. Р. Сергиенко, низкие зна чения отвечают истинной молекулярной массе, а значения выше 10 000 — массе надмолекулярных частиц, т. е. разной сложности ассоциатов молекул асфальтенов. В целом битум представляет собой ряд соединений с непрерывно возрастающей молекулярной массой 8]. [c.11]

    К образованию ассоциатов способны не только однородные, но и разнородные молекулы, К концу XIX в, были известны многочисленные случаи взаимодействия разнородных молекул с образованием сложных, так называемых молекулярных соединений. Так, например, давно была известна способность аммиака образовывать с хлороводородом соединение, называемое хлоридом аммония  [c.65]

    В неполярной среде ион отличается значительным дальнодействием по сравнению с полярными жидкостями в отличие от водных растворов, где ион полностью нейтрализуется полярными молекулами, в неполярной среде происходит лишь частичная компенсация его заряда вследствие малого содержания дипольных молекул и, по-вндимому, из-за сложного строения дифильных молекул. Носители тока в неполярных средах могут иметь переменную величину подвижность таких ассоциатов меньше, чем у исходного иона. Возможно, при электрической проводимости большую роль играют именно такие системы с центральным ионом. Электростатическое диполь-дипольное взаимодействие молекул невелико и, по-видимому, не имеет большого значения при образовании молекулярных димеров, где главное место отводится водородным связям. [c.27]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]


    Ввиду того что все процессы, связанные с нагреванием диэлектрика, идут одновременно, при рассмотрении кривых следует говорить лишь о преобладающем влиянии в разных интервалах температур тех или иных факторов. Так, например, о преобладающем влиянии на диэлектрическую проницаемость раствора явлений диссоциации молекулярных ассоциатов и происходящего вследствие этого освобождения полярных групп можно сделать заключение по восходящей ветви кривой г=f t), где Ae/Ai>0. Наоборот, на нисходящей ветви кривой, когда Ae/Ai<0, определяющее влия- [c.186]

    Эти данные показывают, что, в то время как поляризация разбавленных растворов смол в и-гептане уменьшается с повышением температуры, что вполне закономерно для растворов полярных веществ при отсутствии ассоциации, поляризация растворов асфальтенов в бензоле заметно возрастает при нагревании даже для очень разбавленных растворов. Это явление можно объяснить лишь тем, что диссоциация молекулярных ассоциатов асфальтенов при повышении температуры оказывает преобладающее влияние на поляризационные свойства растворов, даже прп малых концент- [c.188]

    Из данных, полученных методом ЭПР, следует, что с возрастанием молекулярного веса асфальтенов повышается содержание свободных радикалов и вместе с этим резко возрастает процентное отношение числа углеродных атомов, входящих в ароматические структуры, к общему числу С-атомов в молекуле. Это согласуется с положением, утверждающим, что конденсированные полициклические ароматические структуры асфальтенов являются центрами образования ассоциатов молекул асфальтенов. Экспериментальные данные согласуются с теорией, что в нефтяных асфальтенах свободные электроны или радикалы связаны с нелокализованными системами я-электронов, стабилизированных резонансом. [c.225]

    Для некоторых смесей сераорганических соединений с гидроочищенными реактивными топливами найдены значения а и Ь. Азотоорганические соединения основного характера в оптимальных концентрациях тормозят процессы окисления, однако при дальнейших окислительных превращениях теряют свои ингибирующие свойства. В результате конденсации и полимеризации продуктов окисления в истинном растворе нефтепродуктов появляются молекулы и их ассоциаты, молекулярная масса которых превышает среднюю массу молекул топлива в 2—3 раза. Но эти окисленные молекулы еще растворимы в топливе и не выпадают из раствора. Критической ситуация становится тогда, когда в результате окислительного уплотнения образуются молекулы, уже не растворяющиеся в топливе, и раствор становится фактически коллоидным. Собственно процесс коагуляции образовавшихся коллоидных частиц и является процессом образования смол и осадков. Исследованию этого процесса автор посвятил 17 лет. Часть этой работы опубликована [2]. [c.82]

    Молекулярные ассоциаты, в свою очередь, диссоциируют на комплексные и лр(1стые иопы  [c.96]

    Наиболее склонны к формированию ассоциированных комплексов асфальтены и смолы. На склонность их к ассоциированию существенное влияние оказывает содержание в них ароглатизованных фрагментов, которое обычно оценивается показателем степени ароматичности. Ароматичность смол составляет 20-40%, асфальтенов 40—50%. Число конденсированных ароматических фрагментов у смоц достигает 1—4. С увеличением молекулярной массы и переходе к асфальтенам этот показатель возрастает, достигая 7,5 [22]. Наименее ароматизованные смолы преимущественно находятся в диспергированном состоянии в дисперсионной среде, а более ароматизованные, имеющие соответственно более высокие значения молекулярных масс, концентрируются в сольватном слое структурных единиц с ядром, состоящим из ассоциатов асфальтенов. При избыточном содержании асфальтенов и малой растворимости дисперсной среды (масел), они составляют в остатках дисперсную фазу. При низком содержании асфальтенов нефтяные остатки по свойствам [c.23]

    При рассмотрении структуры отдельных частиц асфальтенов следует учитывать их происхождение (нативные, подвергнутые термической деструкции), а также возраст нефти. Асфальтены, выделенные из остатков вакуумной перегонки, характеризуются меньшим содержанием водорода и более высоким содержанием гетероатомов, чем нативные. Нативные асфальтены, вьщеленные из молодых нефтей, характеризуются линейной надмолекулярной структурой, в которой связи между структурными блоками осуществляются метиленовыми цепочками [19]. Асфальтены более старых нефтей, прошедшие стадию глубокого катагенеза, имеют пачечную макроструктуру [25]. По этой модели (рис. 1.6) асфальтены ббразуют трехмерную структуру из ряда монослоев полициклических конденсированных аренов. Монослой (рис. 1.7) имеет М 800-3500, а образованная этими частицами слоистая структура М 5 500—5 900. Ассоциаты, образованные слоистыми частицами, могут иметь М 37 ООО-100 ООО. В настоящее время пйлучило всеобщее признание объяснение высоких значений молекулярной массы асфальтенов склонностью их к ассоциации с образованием коллоидных частиц различных размеров [23, 25]. [c.24]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Исходя из коллоидно-химических представлений о структуре нефтяных остатков (см.гл.1), механизм превращения СОЕ сырья в гипотетической форме может быть следующим (рис. 2.14). На стадии предварительного нагрева сырья с водородом до адсорбции на поверхности катализатора происходят первичные изменения структуры сырья, заключающиеся в том, что ядро ССЕ, состоящее из ассоциатов асфальтенов, диспергируется. Первичная сольватная оболочка ССЕ распределяется между диссоциированными частицами первичного ядра. Часть компонентов первичной сольватной оболочки растворяется в дисперсионной среде, находящейся в состоянии истинного молекулярного раствора. В предельном случае ядро ССЕ может быть представлено единичной частицей асфальтена. Каждая из этих частиц окружена сольватной оболочкой, толщина которой зависит от содержания смол, полиаренов, высоко- [c.68]

    Внутри поры ядро ССЕ, имеющее наибольшую молекулярную массу, осаждается на активной поверхности, на которой протекают реакции каталитического разложения надмолекулярных структур отдельных частиц асфальтенов. Каталитическое разложение асфальтенов ведет к зарождению отдельных составляющих частиц или осколков, имеющих меньшую молекулярную массу. Осколки, десорбируясь с поверхности, диффундируют в дисперсионной среде и адсорбируются на других активных центрах катализатора, на которых претерпевают химические превращения. В частности, на центрах де металлизации из металлсодержащих комплексов удаляются металлы вслед за гидрированием слабых химических связей. Деметаллизованные осколки в дальнейшем не участвуют в формировании новых надмолекулярных структур, хотя вероятность этого не исключена. Некоторые осколки асфальтенов адсорбируются на центрах гидрообессеривания, где происходят реакции гидрогенолиза серы до сероводорода и гидрирование слабых химических связей. Обессеренные осколки асфальтенов могут ассоциировать друг с другом, зарождая новые ассоциаты с низкой молекулярной массой (обессеренные асфальтены). Параллельно могут протекать реакции деазотирования с вьщелением аммиака, реакции термодеструкции и гидрокрекинга алканов и деалкилирования аренов, реакции гидрирования ненасьпценных осколков молекул и аренов. [c.69]

    Предполагается, что реакционноспособность концевых функ-цпональных групп соединений, отличающихся молекулярными массами, может быть различной в тех случаях, когда способны образовываться ассоциаты с участием концевых групп. [c.158]

    Полимер с эпоксиуретановыми группами обладает значительно более высокой вязкостью, чем аналогичный полимер, не содержащий таких групп. Зависимость вязкости от температуры — нелинейна (в координатах Аррениуса), т. е. энергия активации вязкого течения изменяется с температурой, что указывает на обратимый распад физических связей между полимерными цепями при повышении температуры. С уменьшением молекулярной массы вязкость возрастает. Это можно объяснить увеличением концентрации концевых групп, что приводит к увеличению густоты квазисетки , образованной за счет ассоциации концевых фрагментов полимерных цепей (рис. 3). Связь между полимерными цепями осуществляется за счет водородных связей, что было доказано путем изучения ИК-спектров этих полимеров. Разрушение ассоциатов разбавителями сопровождается резким падением вязкости полимера. Это особенно сильно проявляется, если разбавитель содержит протонодонорные или электроноакцепторные группы, способные взаимодействовать с водородными связями в ассо-циате [65]. [c.439]

    Кроме того, в полиуретанах удлинение успешно осуществляется не только на стадии получения преполимеров, но и на стадии отверждения конечного продукта. Несоответствие абсолютных значений молекулярной массы, полученных различными авторами, обусловлено особенностями строения полимеров, а именно наличием устойчивых ассоциатов высокой энергии когезии. Использование таких методов, как светорассеяние, осмометрия, ультрацентрифугирование, химический анализ концевых групп оправдано только для молекулярной массы эластомеров не выше 2,5-10 . Так, молекулярная масса линейных полиуретанов, определенная виско-зиметрически, составила З-Ю" [42]. Для полиуретанов молекулярной массы 5-10 и более можно считать вполне надежными данные спектров ЯМР [43]. [c.537]

    Противоводокристаллизационные присадки предотвращают образование кристаллов льда в топливе и одновременно растворяют кристаллы льда, уже в нем содержащиеся. В качестве таких присадок применяют этилцеллозольв, тетрагидрофурфуриловый спирт и их смеси с метанолом. Действие присадок обусловлено повышением растворимости воды за счет образования водородной связи между молекулами присадки и воды. До тех пор пока содержание воды в топливе не превышает ее растворимости при данной температуре, вода в присутствии присадки находится в молекулярном несвязанном состоянии. Избыточная, выделяющаяся при данных условиях вода в свободном состоянии ассоциируется присадкой. При этом ассоциат включает минимум четыре молекулы воды. При высоком содержании [c.198]

    Основной причиной этих противоречий является способность асфальтенов, как и смол, образовывать молекулярные соединения — ассоциаты. Поэтому молекулярная масса смолисто-асфаль-теновых веществ в очень большой степени зависит от принятого метода анализа и условий эксперимента. Большое значение имеют также тип растворителя, его полярность, концентрация асфальтенов в растворе, температура и т. п. Надежные и хорошо воспроизводимые значения молекулярной массы асфальтенов получаются, например, при использовании криоскопнческого метода в растворе нафталина при температуре 80 °С (температуре плавления нафталина) и выше при концентрации асфальтенов в растворе от 1 до 16%. При этом молекулы асфальтенов практически не ассоциируют, и молекулярная масса стабильно равна от 2000 до 2500. Это значение подтверждено многими исследованиями последнего времени [42]. Определение молекулярной массы тех же асфальтенов методом мономолекулярной пленки бензольного раствора асфальтенов на воде приводит к значениям 50 000— 100 000 и более [19, с. 501 и сл.]. Вероятно, истинно мономолеку-лярного слоя асфальтенов при этом не получается и основную роль здесь играют крупные ассоциаты молекул. Таким образом, такие высокие значения характеризуют не молекулярную массу асфальтенов, а степень ассоциации их молекул в принятых условиях. [c.33]

    Подавляющее большинство металлопорфиринов в нефтях присутствует в свободной, мономолекулярной форме. Наряду с этой основной формой возможно существование димеров, ассоциатов или молекулярных соединений металлопорфиринов с асфальтеновыми структурами, аминокислотными производными и некоторыми другими сложными соединениями. Какие-либо сведения о структуре таких веществ пока не получены. Есть все основания предполагать, что в связанной с другими соединениями формб может находиться лишь относительно небольшое количество порфиринов. То же самое можно сказать и о порфириновых молекулах,. включающих свободную карбоксильную группу. Возможность существования таких структур полностью исключить нельзя, но их относительное количество не может быть сколько-нибудь значительным. [c.141]

    Участие катализатора в образовании комплекса соединения, имеющего гидроксильную группу, не исключает образования ассоциатов за счет водородных связей. Протоны таких связей имеют иные химические сдвиги, чем в изолированных молекулах. Для выяснения природы алкилирующего поляризованного комплекса и учета степени проявления водородной связи в спектре ЯМР молекулярного соединения К-С3Н7ОН—А1С1з были изучены температурные зависи- [c.70]

    Значения моле1кулярной маосы карбенов показывают, что длина цепи при разложении асфальтенов не менее 120—150 звеньев. Исследование кинетики образования кокса при разложении асфальтенов в растворах различных растворителей показало, что кокс образуется только тогда, когда асфальтены выделяются в отдельную фазу. При выделении асфальтенов из раствора происходит их конденсация до кокса. Если же асфальтены молекулярно (или в виде малых ассоциатов) диспергированы в растворителе, то кокс не образуется. Объясняется это следующим. [c.120]

    В зависимости от природы растворителя, температуры и концентрации асфальтенов в растворе можно получить истинные или коллоидные их растворы и соответственно истинные молекулярные веса последних или же массовые числа, характеризующие размеры коллоидных частиц или ассоциатов. Если криоскониче-ское определение молекулярных весов асфальтенов производить в условиях, обеспечивающих получение истинных, т. е. молеку- [c.81]

    На рис. 30 приведены данные, отражающие эту зависимость для растворов неразделенной смолы гюргянской нефти в к-гептане. Аналогичные данные были получены для всех фракций смол гюргянской и ромашкинской нефтей. Как было показано выше, ири нагревании уменьшается диэлектрическая проницаемость растворов неассоциированных полярных веществ. Характер завп-спмости e=/(i) для разбавленных растворов смол полностью соответствует этому. Наличие же восходящих участков на кривых, соответствующих высоким концентрациям смолы в растворе, свидетельствует о явлениях ассоциации в концентрированных растворах смолистых веществ. Диэлектрическая проницаемость увеличивается при нагревании вследствие освобождения полярных групп, участвующих в образовании молекулярных ассоциатов, в связи с диссоциацией последних при повышении температуры. [c.186]

    Различие в химических свойствах фракций смолистых веществ проявляется и в характере температурной зависимости диэлектрической проницаемости растворов последних. Наблюдается следующая закономерность чем более полярным растворителем извлечена из силикагеля данная фракция смолы, тем при меньших концентрациях раствора на кривых e=f(t) появляется максимум, а в близких концентрациях максимум тем значительнее и тем больше смещен в область высоких температур. Так, например, для раствора фракции смолы ромашкинской нефти, извлеченной ацетоном, наблюдается максимум на кривой е=/( ) уже при концентрации смолы в растворе, равной 14%, причем восходящая ветвь кривой (Ае/Л >0) доходит до +7°, в то время как для фракции смолы этой же нефти, но извлеченной четыреххлористым углеродом, максимум на соответствующей кривой появляется при концентрации смолы, равной 33%, а восходящая ветвь кривой кончается уже при —5°. Сопоставление этих данных с результатами изучения химического состава и свойств соответствующих фракций ясно показывает, что увеличение склонности к ассоциации смолистых веществ в растворе связано с увеличением количества полярных групп и с повышением суммарного содержания в смоле гетероатомов (З+К+О). Чем выше содержание гетеропроизводных органических соединений, тем сильнее и в более широком интервале происходит повышение диэлектрической проницаемости с ростом температуры, обусловленное диссоциацией молекулярных ассоциатов. Эти выводы носят пока качественный характер, поскольку количественные соотношения могут быть установлены только при учете фактора вязкости. [c.187]


Смотреть страницы где упоминается термин Ассоциаты молекулярные: [c.78]    [c.36]    [c.70]    [c.169]    [c.117]    [c.147]    [c.17]    [c.57]    [c.58]    [c.29]    [c.77]    [c.78]    [c.221]   
Химия справочное руководство (1975) -- [ c.425 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциаты

Существующие модели молекулярных ассоциатов жидкокристаллических структур) воды



© 2025 chem21.info Реклама на сайте