Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурообразование процессе синтеза полимеро

    Химическая и структурная неоднородность, возникающая в результате воздействия границы раздела на процесс синтеза полимера и его структурообразование, также вносит свой вклад в механические свойства. Поэтому можно сказать, что характер протекающих на границе раздела процессов существенно сказывается на прочностных свойствах материала. [c.179]


    Способы понижения внутренних напряжений путем регулирования структурообразования в процессе синтеза полимеров [c.182]

    Зачастую в процессе синтеза полимера вероятность образования различных надмолекулярных структур с термодинамической точки зрения может быть очень близкой. Поэтому решающее влияние, на процесс структурообразования оказывает кинетический фактор, в частности, соотношение скоростей образования полимера, выделения его в отдельную фазу и формирования надмолекулярной структуры. Уменьшение скорости образования полимера во всех случаях приводит к получению более совершенных структур. [c.36]

    Технологические процессы синтеза, переработки и использования полимеров практически никогда не реализуются как равновесные. В связи с этим комплекс потребительских свойств полимерных материалов обусловлен тем уровнем структурообразования, который достигается формируемой системой к моменту принудительного прекращения конкретного процесса. Вот почему достаточна строгое описание таких процессов может быть осуществлено при совместном анализе как роли гибкости макромолекул, так и динамики структурообразования в полимерных системах. Иными словами, анализ кинетики процессов в полимерных системах наряду с термодинамическими характеристиками их весьма важен для обоснованного научного прогноза. Это тем более существенно, что как в живой природе, так и во многих вариантах химических технологий осуществляются взаимные переходы гомофазных и гетерофазных полимерных систем, причем истинное равновесное состояние практически никогда не реализуется. [c.9]

    Таким образом, граница раздела оказывает двоякое влияние на процессы синтеза и структурообразования в трехмерных полимерах, увеличивая вероятность реакции обрыва на начальных стадиях реакции и затрудняя обрыв на более глубоких стадиях вследствие адсорбционного взаимодействия растущих цепей с поверхностью, которое, в свою очередь, влияет на скорость реакции и структуру сетки. В результате можно считать, что такая важная характеристика сетки, как эффективная плотность сшивки, учитывающая физические и химические узлы сетки, оказывается различной для случаев проведения реакции в присутствии и в отсутствие границы раздела с наполнителем. Это положение особенно хорошо иллюстрируется на примере изучения системы, в которой вклад физических узлов в эффективную густоту сетки очень велик по сравнению с вкладом химических узлов, а именно, на примере трехмерных полиуретанов [253]. [c.178]


    Окращивание в процессе синтеза может вызвать изменение структуры и свойств поликапролактама. Так, в случае анионной полимеризации капролактама введение в процессе полимеризации 0,005—0,1 % фталоцианинового голубого и 0,005—0,030 % капро-золя алого С позволяет заметно улучшить физико-механические свойства полимеров [95]. Это связано, по-видимому, с тем, что пигмент в данном случае играет роль зародыша структурообразования при кристаллизации поликапроамида, изменяются размеры структурных элементов окрашенного полимера по сравнению с неокрашенным диаметр сферолитов в неокрашенном полимере 30— 35 мкм, в окрашенном — 15 мкм. Улучшение механических свойств наблюдали также при введении диоксида титана и технического углерода [96, 97]. [c.165]

    Интересно отметить,что влияние наполнителя на процессы структурообразования сказывается по-разному при введении наполнителя в готовый полимер или при введении в реа кционную систему в ходе синтеза [149]. [c.76]

    Руководство этими работами на одном из химических заводов было возложено на В. А. Каргина, который сразу же поставил вопрос о необходимости создания научной лаборатории для разработки методов получения высококачественного органического стекла, которая выросла затем в самостоятельный Государственный научно-исследовательский институт хлорорганических продуктов и акрилатов (переименован в Научно-исследовательский институт химии и технологии полимеров имени академика В. А. Каргина). Деятельность лаборатории-института, которую В. А. Каргин направлял и координировал до конца своей жизни, привела к решению ряда важных научно-технических задач в области структурообразования в процессе полимеризации и переработки полимеров, старения полимеров и его влияния на изменение физико-механических свойств изделий, модификации полимеров в направлении улучшения их физико-механических свойств, синтеза новых мономеров и разработке способов их полимеризации. В результате были получены высококачественные органические стекла и многие другие полимерные материалы первостепенной практической значимости. [c.10]

    Каждая мономерная единица (или остаток ) полипептида I—ЫН—СНК—СО—] содержит асимметрический атом углерода. Эти асимметрические атомы имеются в мономерных единицах до полимеризации, и их конфигурация не изменяется в процессе полимеризации. Если в синтезе полипептида исходить из оптически чистой аминокислоты, то конфигурация каждого асимметрического атома в полученном полимере автоматически остается той же самой, и, таким образом, становится возможным образование регулярной структуры. Полипептиды, исследованные методами рентгенографии, принадлежали к этому типу. Они имели высокую степень кристалличности и давали рентгенограммы волокна хорошего разрешения В результате интерпретации рентгенографических данных был сделан вывод, что определяющую роль в структурообразовании полипептидов, находящихся в твердом состоянии, играют силы, действующие между сегментами полимерных цепей, не соединенными химическими связями. [c.66]

    Умение управлять процессами структурообразования в полимерах открывает достаточно широкие возможности регулирования механических свойств. На каждой из стадий — начиная от синтеза и кончая изготовлением изделий и их эксплуатацией — можно регулировать надмолекулярную структуру полимерного тела. С течением времени, особенно при повышенных температурах и механических нагрузках, в полимерных телах развиваются процессы структурного старения, т. е. процессы упорядочения, дальнейшего роста и преобразования надмолекулярных структур. [c.361]

    Другим приемом регулирования надмолекулярных структур на стадии синтеза является химическая модификация полимеров (например, получение привитых сополимеров) . Прививка способствует возникновению характерных структур, а также позволяет прекращать процесс структурообразования на нужном уровне. [c.362]

    Для развития работ по исследованию физико-мехавтческих свойств и структуры высокомолекулярных соединений в 1959 г. В. А. Каргин (был приглашен в Институт нефтехимического синтеза АН СССР (ИНХС). Б лаборатории полимеризации олефинов он возглавил группу по изуче- ншо свойств и структуры полимеров, в которой успешно проводились исследования процессов структурообразования в изотактическом поли-лропилене, структурно-химических превращений полиакрилонитрила при его карбонизации и изучение структурной модификации расплавов полимеров введением малых добавок низкомолекулярных веществ. В 1962 г. В этом же институте была организована группа по новым методам полимеризации, одним из основных направлений которой было исследование процессов матричной полимеризации на синтетических макромолекулах, моделирующих некоторые аспекты биологического синтеза полимеров в клетках живых организмов. Эти работы, впервые поставленные в ИНХС, получили широкий отклик и дальнейшее развитие как в СССР, так и за рубежом в 1964 г. в ИНХС В. А. Каргиным была организована еще одна группа, в которой развитие получили работы в области химической модификации полиолефинов и некоторых других полимеров [c.10]


    Сознательный, т. е. научно обоснованный синтез прочности или, вернее, носителя прочности реального твердого тела — проблема новых рациональных строительных и конструкционных материалов в современной технике. Она прежде всего и определяет актуальность физико-химической механики, ее выдающееся прикладное значение. Ученые физнко-химнки до последнего времени обычно относились к этой важной проблеме пренебрежительно, считая, что ее разработка — дело технологов и может проводиться эмпирически, без участия физико-химической науки. Со своей стороны, технологи, оторванные от исследователей — механиков и физико-химиков, успешно решали лишь отдельные узкие вопросы, обращаясь к физико-химии только для того, чтобы использовать новые методы измерения. Таким образом, основные задачи не были даже правильно поставлены, не было физико-химических представлений о существе процессов деформирования и разрушения, с одной стороны, и структурообразования — с другой. Даже не выдвигалась проблема установления общих закономерностей в этой важнейшей области науки и практики. Отсутствие современных физико-химических представлений о существе и механизме процессов приводило к техническому формализму в его худшем виде творческое научное исследование подменялось эмпирическими рецептурными сведениями на основе давно устаревших взглядов. Если в области металлов и новых сплавов, а также полимеров и пластиков здесь уже довольно много сделано, то основные проблемы неметалличргких мятрриялов на основе ионных кристаллов (цементы и бетоны, керамика) до последнего времени оставались нерешенными. [c.209]

    Единой точки зрения на механизм процессов структурообразования до и после точки гелеобразова1тя в настоящее время нет. При изучении кинетики реакции образования сетчатого полиуретана было отмечено, что два участка на кинетических кривых полимеризации связаны с раз-ЛИЧ1ЮЙ реакционной способностью групп. Полагают [64], что химические реакции не чувствительны к изменяющейся и сильно усложняющейся после точки гелеобразования структуре сетчатых полимеров. Было установлено [80], что расстояние между узлами сетки при синтезе полиуретанов определяется не только параметрами, характеризующими процесс на молекулярном уровне, но и физическими свойствами среды, и в первую очередь уровнем межмолекулярного взаимодействия в системе. Экспери.ментально установлено, что при 85° -ной степени превращения после точки гелеобразования массовое содержание золь-фракции составляет около 58",,, а молекулярная масса ее в ходе реакции возрастает. В связи с этим полагают, что сплошная трехмерная структура образуется на более глубоких стадиях реакции. На основании этих данных был с.телан вывод о том. что независимо от способа синтеза можно выделить два периода в формировании геля в сетчатых полимерах возникновение сшитых частиц коллоидного размера, сосуществующих с золь-фракцией, нарастание их концентрации до критического значения и образование монолитной сетчатой структуры (структурное гелеобразование) за счет связывания между собой частиц при достижении ими критической концентрации. При этом структура может формироваться за счет сшивания частиц микрогеля непосредственно между собой либо через разветвленные. макромолекулы, не вошедшие в состав частиц. [c.82]

    Комплексной программой химизации народного хозяйства СССР на период до 2000 г. предусматривается ускоренное развитие полимерных материалов и изделий из них, и в первую очередь пластических масс и синтетических смол. Увеличение производства синтетических полимерных материалов настоятельно требует глубокого теоретического изучения физико-химических основ процессов, протекающих при синтезе, переработке и эксплуатации полимеров. Одним из таких весьма распространенных процессов является молекулярный перенос веществ— диффузия. Велика роль диффузии в таких физикохимических процессах, как набухание и растворение полимеров, структурообразование и крашение, как пленкообразование и сушка, адгезия и аутогезия каучуков, сваривание термопластов. Значительное влияние оказывают диффузионные процессы на защитные и гигиенические свойства полимерных материалов и готовых изделий, остаточное содержание мономера в по-лимеризате и выпотевание ингредиентов полимерных композиций, на течение процессов полимеризации при глубоких степенях конверсии и деструкции макромолекул в твердой полимерной матрице и т. д. [c.4]


Смотреть страницы где упоминается термин Структурообразование процессе синтеза полимеро: [c.139]   
Долговечность полимерных покрытий (1984) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Структурообразование

Структурообразование в полимерах



© 2025 chem21.info Реклама на сайте