Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярные молекулы, реакции с ионам уравнение для скорости

    В предлагаемой вниманию советского читателя монографии Амиса систематизирован и обобщен большой теоретический материал в сопоставлении с известными эксиеримеитальиыми данными. В монографии последовательно рассматриваются вопросы влияния растворителя на реакцин между ионами, между ионами и полярными молекулами,, а также — на реакции электронного обмена. Отдельная глава посвящена разбору корреляционных уравнений (уравнения Брёистеда, Гаммета, Тафта и др.), которые получили широкое распространенпе при обработке экспериментальных данных. В монографии на конкретных примерах рассматриваются также такие важные вопросы, как влияние избирательной сольватации, клеточного эффекта I водородных связей на скорость и механизм разлнч1 > х химических реакций. [c.5]


    Изложенный выше подход для определения влияния растворителя на скорость ионных реакций был применен и к реакциям между ионами и полярными молекулами. Исходя из электростатических представлений, Кирквуд [16] вывел уравнение изменения свободной энергии при сольватации сферической полярной молекулы радиусом г и динольным моментом [c.37]

    Скорость реакции в растворе может существенно зависеть от диэлектрической постоянной растворителя. Степень электростатического взаимодействия ионов, полярных молекул и ионов с полярными молекулами определяется диэлектрической постоянной среды, поэтому и константа скорости реакции между этими частицами зависит от диэлектрической постоянной. Эта зависимость выражается уравнением Скетчарда [c.347]

    Степень электростатического взаимодействия ионов, полярных молекул и ионов с полярными молекулами определяется диэлектрической постоянной среды, поэтому и константа скорости реакции между этими частицами зависит от диэлектрической постоянной. Эта зависимость выражается уравнением [c.342]

    Концепция об определяющей роли когезионного (или внутреннего) давления полезна только при изучении реакций между нейтральными неполярными молекулами в неполярных растворителях, поскольку в таких случаях можно пренебречь другими свойствами растворителей, в том числе их сольватирующей способностью и полярностью. В реакциях между биполярными молекулами или ионами растворитель взаимодействует с реагентами и активированным комплексом за счет неспецифической и специфической сольватации настолько эффективно, что вклад когезионного давления [см. уравнение (5.81)] в InA становится очень небольшим. Следует подчеркнуть, что когезионное, или внутреннее, давление не является мерой полярности растворителя. Полярность отражает способность растворителя взаимодействовать с растворенным веществом, в то время как когезионное давление, будучи характеристикой структуры растворителя, служит мерой количества энергии, необходимой для создания в данном растворителе полостей, способных вместить молекулы растворенного вещества. Таким образом, полярность и когезионное давление — это комплементарные параметры и скорость реакции зависит от каждого из них [27, 232]. Влияние полярности растворителя на скорость реакций обсуждается в последующих разделах. [c.281]


    Рассмотрим теперь изменения скорости реакций, которые могут быть вызваны добавлением солей. Возникающие при этом эффекты обычно подразделяют на две категории. К первой относятся изменения активности ионов или полярных молекул. Этот эффект называют первичным, чтобы отличить его от вторичного солевого эффекта, обусловленного тем, что ионная сила раствора влияет на истинную концентрацию ионов, образующихся при диссоциации слабых электролитов. Хорошо известным примером является замедление реакции, катализируемой кислотой или основанием, под действием соли, что связано с подавлением ионизации каталитической кислоты или основания. Оба солевых эффекта описываются в рамках электростатических представлений с помощью уравнений, выведенных Бренстедом, Бьеррумом и Кристиансеном. Все эти уравнения основаны на теории Дебая — Хюккеля, но каждое из них опирается на несколько различающиеся допущения, которые сопоставлены в известной книге Амиса [3]. Все три уравнения можно свести к простому общему виду [c.197]

    В работах по исследованию влияния растворителей на скорости реакций между ионами и полярными молекулами приходится учитывать поляризуемость молекул среды и включать в расчетные формулы функции показателя преломления [89], подобно тому, как это делается при рассмотрении влияния растворителя на спектры растворенных веществ (ср. п. 3). Иногда уравнения, предложенные для корреляции спектральных сдвигов с диэлектрической проницаемостью и показателем преломления растворителей, непосредственно используются для корреляции констант скоростей реакций Б различных растворителях [90]. [c.117]

    Зависимость константы скорости реакции от Д растворителя при взаимодействии иона с полярной молекулой описывается уравнением Амиса ц д е, б [c.285]

    Между ионами и дипольными молекулами действуют электрические силы, которые изменяются при перенесении частиц в раствор. Характер и величина этого изменения зависят от полярных свойств растворителя и его диэлектрической проницаемости. Поэтому в выражении для скорости реакции между ионом и дипольной молекулой должен появиться зависящий от диэлектрической проницаемости электростатический член, подобный аналогичному члену в выражении для скорости реакции между ионами. Электростатические взаимодействия между попами и дипольными молекулами не столь значительны по сравнению с аналогичными взаимодействиями между ионами, поэтому они легче маскируются структурными или иными эффектами среды. Тем не менее это взаимодействие совершенно отчетливо и его следует оценить. Имеется несколько теоретических уравнений, описывающих влияние растворителя на электростатические взаимодействия и скорость реакций между ионами и дипольными молекулами. Ниже изложены некоторые из этих теорий. [c.39]

    В катионной полимеризации такая закономерность не установлена напротив, имеется сбивающее с толку множество кинетических зависимостей, отражающих разнообразие химии этих систем. Более того, во многих системах скорость зависит от трех концентраций от концентрации мономера, катализатора и сокатализатора. Дальнейшее усложнение, не имеющее параллелей в радикальной полимеризации, состоит в том, что порядок реакции относительно мономера обычно зависит от диэлектрической проницаемости растворителя, повышаясь вплоть до третьего порядка в растворителях с низкой диэлектрической проницаемостью, например в четыреххлористом углероде. Порядок относительно катализатора может также зависеть от растворителя. Это объясняется тем, что в среде, которая сама не может обеспечить необходимой энергии сольватации, ионные пары стабилизуются наиболее полярными или поляризующимися молекулами из числа присутствующих в системе, т. е. мономером или катализатором, так что последние могут быть включены в кинетическое уравнение, хотя они не принимают непосредственного участия в реакции. Некоторые из кинетических соотношений, установленных в различных системах, суммированы Пеппером [21 и Имото [86]. Почти во всех обсуждениях кинетики явно или молчаливо предполагают, что катионную полимеризацию можно рассматривать с помощью метода стационарного состояния. В отношении многих систем это, вероятно, правомерно, но описаны и другие системы, в которых кривая реакции имеет S-образную форму [23, 87— 891, что указывает на наличие более медленной фазы, в течение которой концентрация растущих цепей может увеличиваться существуют и такие системы, в которых полимеризация прекращается раньше полного израсходования мономера, что указывает на уменьшение числа растущих цепей [23]. Последнее явление было использовано Пеппером для определения констант скорости роста и обрыва — это первое такое определение, сделанное в катионной полимеризации [16]. [c.108]

    Рассмотрение данных, приведенных в табл. 9.4, позволяет выявить некоторые общие особенности реакций между ионами и полярными молекулами в гидроксилсодержащих растворителях. За исключением реакций омыления сложных эфиров, постоянная Л примерно одинакова для всех реакций. Сопоставление первой строчки табл. 9.4 с данными табл. 8.9 показывает, что замещение атома водорода на карбоксильную группу приводит примерно к двукратному увеличению константы скорости реакции СНзС1+1 -> - СНз1-ЬС1 и снижению энергии активации на 0,25 ккал. Данные по омылению сложных эфиров подтверждают р нние результаты по гидролизу этилацетата [51, 66], согласно которым lgA2 = = 7,22 0,07, = а 205 5 кал. Для процессов этого типа, по-видимому, g Л 2 примерно на три единицы меньше, чем для других типов реакций. Было высказано предположение, что, по крайней мере частично, это различие определяется типом столкновений, обеспечивающих реакции рассматриваемых типов. Если растворитель действует как третий участник реакции, то, по-видимому, применимо уравнение (5.52). Данные, помещенные в четвертой строчке табл. 9.4, показывают, что замена этильной группы на трет-бутильную приводит к существенному снижению скорости реакции с ионами гидроксила, в противоположность влиянию такого замещения на реакции других типов, которые мы обсудим позже. Если сравнить данные табл. 9.4 с результатами, которые обсуждались в гл. 8, то мы увидим, что значения параметров уравнения Аррениуса для реакций замещения в алифатическом и ароматическом рядах, такнх, [c.246]


    Хотя эти заключения согласуются с эмпирическим уравнением Грубе и Шмидта [22], после введения поправок на степень диссоциации лишь в редких случаях обнаруживается истинный электролитный эффект. По-видимому, в целом, в согласии с теорией Бренстеда и Бьеррума, бимолекулярная константа скорости реакций между ионами и полярными молекулами в разбавленных растворах не зависит от концентрации электролита. Это было показано еш,е Аррениусом [3] и Бургарским [12] на примере реакции между этилацетатом и ш елочами. Были выдвинуты более общие объяснения влияния ионной силы на скорости реакций между ионами и полярными молекулами [18, 52]. [c.250]

    Таким образом, при анализе можно пользоваться уравненияхми (VI. 10) и (VI.11). Скорость инициирования увеличивалась при возрастании полярности Среды, как и любая реакция двух нейтральных молекул, приводящая к образо(ванию ионных продуктов.- Константу скорости инициирования можно найти из уравнений (VI. 10) и (VI.11) по формуле [c.213]


Смотреть страницы где упоминается термин Полярные молекулы, реакции с ионам уравнение для скорости: [c.251]    [c.232]    [c.588]    [c.293]    [c.178]    [c.615]   
Основы химической кинетики (1964) -- [ c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Ионное уравнение реакци

Ионные уравнения реакции

Ионы реакции с молекулами

Ионы скорость

Молекула ионная

Полярность молекул

Полярные молекулы

Полярные молекулы, реакции с ионам

Скорость ионная

Скорость ионов

Скорость молекул

Уравнение скорости

Уравнения ионные

Уравнения реакций



© 2025 chem21.info Реклама на сайте