Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы реакции с молекулами

    Составить схемы полуреакций окисления и восстановления с указанием исходных и образующихся реально существующих в условиях реакции ионов или молекул. [c.167]

    Химические методы установления строения основываются на проведении с помощью реагентов таких реакций, которые позволяют судить о наличии определенных атомных группировок (функциональных групп) или ионов в молекуле исследуемого соединения. Физические методы установления строения получают все большее развитие. С их помощью устанавливается не только строение исследуемого соединения, но также оказывается возможным определить детали структуры молекулы, например размеры молекулы, атомные расстояния и углы между связями. Физические методы определения строения имеют не только большие возможности по сравнению со старыми методами классической химии, но также позволяют значительно сократить время исследования. В случае же сложно построенных молекул старые методы установления строения вообще бессильны. [c.132]


    Начиная со времен Лавуазье химики могли предсказывать, в каком направлении пойдут те или иные быстрые ионные реакции относительно небольших молекул, и могли модифицировать эти реакции с целью их практического использования. Изучать сложные молекулы было гораздо труднее. Медленные реакции органических соединений также гораздо труднее поддавались анализу. Часто реакции могли идти несколькими путями, и направить реакцию по нужному пути химику позволяли его мастерство экспериментатора и интуиция, а не глубокое понимание процесса. [c.161]

    Что многие окислительно-восстановительные процессы действительно должны проходить ряд промежуточных стадий, ясно из следующих соображений. Химические реакции в растворах происходят в моменты столкновений соответствующих ионов (или молекул) друг с другом. Вероятность столкновении при прочих равных условиях зависит от числа частиц, участвующих в данной реакции. Так, вероятность столкновений пр ) так называемых бимолекулярных реакциях, происходящих между двумя ионами, например  [c.372]

    Свойства карбоний-ионов. Свободные карбоний-ионы являются высокоактивными частицами, вступающими в реакции с очень большой скоростью. Для некоторых реакций, могущих протекать как по радикально-цепному, так и по карбоний-ионному механизму, активность карбоний-ионов может быть сравнена с активностью радикалов. Так, при полимеризации стирола по радикальному механизму при 20°С константа скорости продолжения цепи равна 35 л-моль- -с , энергия активации продолжения цепи 32,7 кДж/моль (7,8 ккал/моль). Полимеризация стирола на свободных катионах проходит с константой скорости продолжения цепи 35-10 л моль- с- при 15°С и энергией активации 8,4 кДж/моль (2 ккал/моль). Константа скорости присоединения карбоний-иона к молекуле стирола на пять порядков больше, чем для радикала. Карбоний-ионы, как и радикалы, подвергаются мономолекулярному распаду и бимолекулярным реакциям замещения и присоединения. Существенным отличием в химических свойствах карбоний-ионов от свойств радикалов является способность первых с большой скоростью изомеризоваться. Изомеризация карбоний-ионов может проходить в результате переноса как гидрид-иона, так и карбоний-ионов. [c.164]

    Чтобы применять метод переходного состояния к реакциям с участием заряженных или полярных частиц, необходимо знать зависимость коэффициентов активности этих частиц от условий эксперимента. Электростатические взаимодействия проявляются на большом расстоянии на заряженные частицы в растворе влияют не только ближайшие соседние частицы, но и ионы и молекулы, находящиеся на довольно значительном расстоянии. Любые изменения удаленных частиц будут влиять на потенциальную энергию ионов и, таким образом, на их коэффициент активности. Для удобства можно разделить эти взаимодействия на два типа взаимодействие ионов с другими ионами в растворе и взаимодействие ионов с нейтральными полярными или неполярными молекулами. [c.446]


    Авторы предположили протекание реакции по карбоний-ионному механизму с образованием карбкатиона в результате отщепления гидрид-иона от молекулы исходного углеводорода  [c.27]

    Изложенный выше подход для определения влияния растворителя на скорость ионных реакций был применен и к реакциям между ионами и полярными молекулами. Исходя из электростатических представлений, Кирквуд [16] вывел уравнение изменения свободной энергии при сольватации сферической полярной молекулы радиусом г и динольным моментом [c.37]

    Скорость реакции в растворе может существенно зависеть от диэлектрической постоянной растворителя. Степень электростатического взаимодействия ионов, полярных молекул и ионов с полярными молекулами определяется диэлектрической постоянной среды, поэтому и константа скорости реакции между этими частицами зависит от диэлектрической постоянной. Эта зависимость выражается уравнением Скетчарда [c.347]

    Скорость реакции в присутствии катализатора составляет k [СО2] [ at], причем — константа, характерная для данного катализатора и зависящая от температуры, а [ at] — концентрация каталитической добавки. Реакция имеет, таким образом, первый порядок. В присутствии иона или молекулы, которая будет реагировать с ионом водорода, образующимся по реакции (Х,2), катализированная гидратация будет продолжаться вплоть до достижения равновесия. Так, в присутствии ионов карбоната (и при условии незначительного равновесного давления СОа над раствором) вслед за реакцией [c.243]

    Равновесия в водных растворах. Неионные и ионные реакции. Гидратация ионов. Полярность молекул и растворение. [c.206]

    Гипотеза Аррениуса дала возможность объяснить многие особенности в химических свойствах растворов электролитов (реакции гидролиза, значение концентрации водородных ионов и др.). Вытекающие из нее количественные соотношения между различными свойствами растворов — электропроводностью, темпер-атура-ми замерзания и др. — оказались в согласии с опытными данными (хотя и не для всех электролитов). Это в большой степени способствовало признанию правильности исходных положений гипотезы. Однако в гипотезе Аррениуса раствор электролита рассматривался по существу как механическая смесь из молекул растворителя и ионов и молекул электролита, т. е. в этой гипотезе не находило отражения взаимодействие между всеми этими частицами, и поэтому оставалась без объяснения и основная сущность явления. [c.382]

    Так как наиболее легко идет распад с отщеплением третичных карбоний-ионов, в продуктах распада н-парафинов с числом атомов углерода 4 и более преобладают изоструктуры (изопарафины и изоолефины). Ввиду того, что реакция образования карбоний-иона из молекулы парафинового углеводорода [c.200]

    Олефиновые углеводороды. При присоединении протона к молекуле олефина образуется такой же карбоний-ион, как при отрыве гидрид-иона от молекулы парафина, что определяет общность их реакций при каталитическом крекинге. Однако скорость крекинга олефинов на 2—3 порядка больше скорости крекинга соответствующих парафинов, что объясняется значительно большей скоростью образования карбоний-ионов из олефинов при присоединении протона по я-связи. Различие в энергетике образования карбоний-ионов из олефиновых и парафиновых углеводородов может характеризоваться разностью теплот газофазных реакций  [c.204]

    Эта реакция представляет не только огромный промышленный интерес, она стимулировала также фундаментальные исследования, имеющие неоценимое значение для теории карбоний-ионов. Обычно считается, что алкилирование протекает по цепному ионному механизму, когда трет-бутильный ион (в случае алкилирования бутиленами) присоединяется к олефину, давая катион большего размера последний далее отрывает гидрид-ион от молекулы изобутана, образуя продукт алкилирования и новый грег-бутиль-ный ион. [c.13]

    В работах [9, Ю] предположили, что перенос гидрид-иона от молекулы изобутана был не только главным из реакций этого переноса, но и одним из звеньев цепной реакции [см. реакции (1 ) и (146)]. К числу других реакций переноса, предложенных здесь, можно отнести перенос гидрид-иона от растворенных в кислоте олигомеров — см. реакции (3) и (14а) [8, И] и от изобутилена — см. реакцию (14в) [8]. Реакцию (14в), однако, не следует считать очень важной, поскольку на границе раздела кислота/углеводороды (вероятное место протекания алкилирования) присутствуют лишь следы свободного изобутилена — последний быстро протонируется, давая трет-С4Н +. Реакция (14а) имеет большее значение, че.м (146), особенно в присутствии серной кислоты, по следующим причинам. [c.126]

    Некоторые указания на важность взаимодействия молекул в растворах дает тот факт, что из многих тысяч реакций, которые были изучены в растворе, менее чем 20 могут быть изучены для сравнения в газовой фазе. Изучение ионных реакций почти полностью ограничивается растворами по вполне понятным причинам при температурах ниже 1000° К скорость ионных процессов в газовой фазе практически равна нулю. Это объяснение приемлемо для большинства реакций, протекающих в растворах, поскольку, как показано далее, в большинстве реакций между полярными молекулами принимают участие ионы в качестве промежуточных частиц. Например, такая широко известная реакция, как гидролиз амилгалогенов или эфиров в газовой фазе, идет неизмеримо медленно (по крайней мере до тех температур, пока не начинают преобладать другие направления реакции). Единственный большой класс реакций, которые можно изучать как в газовой, так и в жидкой фазе,— свободно-радикальные реакции. Несомненно, этот тип реакций в дальнейшем будет все более тщательно изучаться и даст богатый материал для сравнения кинетического поведения веществ в газовой и жидкой фазах .  [c.423]


    Реакции (19.1) — (19.3), написанные в обратном порядке, описывают ход анодного растворения водородного газа с образованием воды, гидроксониевых ионов илн молекул кислоты. [c.396]

    Из но " I )альных солевых растворов 1 ислород может выделяться за счет разряда гидроксильных ионов и молекул воды. Преобладающим будет тот процесс, который в данных условиях связан с меньнлей затратой энергии. В ко1щеитрированпых растворах кислородсодержащих кислот в реакции выделения кислорода, по крайней мере при высоких плотностях тока, непосредствешюе участие могут принимать анионы кислоты. Существование подобного механизма было доказано Геровичем с сотр. (1957). В их исследо- [c.419]

    Различают реакции с изменением и без изменения степеней окисления элементов. Понятно, что такое подразделение условно и основано на формальном признаке — возможности количественного определения условной величины — степени (состояния) окисления элемента. Неизменность степени окисления элементов при химических превращениях вовсе не означает, что не происходит перестройки электронных структур взаимодействующих атомов, ионов и молекул. Конечно, и в этом случае протекание реакции обязательно связано с большим или м(. ньшим изменением характера межатомных, межиошых и меж-молекулярных связей, а следовательно, и эффективных зарядов атомог . [c.207]

    Реакции без изменения состояния окисления элементов чаще всего протекают в газовых и жидких растворах с участием ионов. Как известно, ионные реакции обратимы, и теоретически каждой системе ионов при данных условиях отвечает определенное состояние равновесия. Смещение химического равновесия (иногда практически нацело) происходит при уменьшении концентрации каких-либо ионов за счет образования относительно мало ионизирующихся молекул или комплексных ионов малорастворимых или летучих соединений правило Бертолле). Так, в реакции нейтрализации ионное равновесие смещается в сторону образования мало ионизирующихся молекул растворителя, например в водном растворе  [c.207]

    Иаппые твердые вещества. Ветцсства тина Na l с решеткой, построенной из регулярно чередуюш,ихся положительных и отрицательных ионов. Иа поверхностях и в углах таких твердых тел электрические ноля весьма велики. Можно ожидать, что такие вещества будут облегчать протекание ионных реакций II реакций между полярными молекулами. [c.532]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    Результаты рассмотр ных выше кинетических измерений несколько противоречивы. Однако большинство исследователей приходит к выводу, что при стехиометрическом соотношении фенола и ацетона реакция имеет первый порядок по фенолу и ацетону и что лимитирующей стадией является конденсация одной молекулы фенола и одной молекулы ацетона с образованием промежуточного карбинола. Прямопропорцинальная зависимость скорости от концентрации кислоты (или протонов) может свидетельствовать о том, что конденсация начинается с присоединения протона. Последующие стадии, вероятно, не лимитируют процесс. Это указывает на то, что они являются быстрыми ионными реакциями или что их промежуточные продукты более реакционноспособны, чем исходные веществу. [c.88]

    П )именйется в избытке. При этом молекулйрнай масса образующегося продукта достаточно высока — более 200000. Это связано с тем, что на концах молекул образуются однотипные функциональные группы —SnNa, которые легко взаимодействуют между собой со скоростью, близкой к скорости ионной реакции, что приводит к получению полисульфидов с высокой молекулярной массой  [c.160]

    Когда атомы отдают электроны при образовании ионов, это называется окислением. Обратный процесс приобретения электронов называется восстановлением. (Для повторения см. гл. II, разд. Г.З.) Электроны переходят от одних атомов молекул или ионов к другим. Все элементы могут быть окислены или восстаиоплены с образованием продуктов окислительно-восстановительной реакции - атомов, молекул или ионов. Реакции окисления - восстановления называют также редокс-реакциями. [c.517]

    Хотя концентрация ионов водорода при разбавлении слабой кислоты уменьшается (об этом свидетельствует высокое значение pH), в диссоциированном на ионы состоянии оказывается большая доля молекул НАс. Здесь мы снова сталкиваемся с проявлением принципа Ле Шателье. Если разбавляют раствор, содержащий НАс, Н и Ас , и тем самым уменьшают общую концентрацию всех ионов и молекул, равновесие проявляет тенденцию к самоподдерживанию и реакция смещается в направлении увеличения общей концентрации растворенных частиц всех видов. Сопоставьте это поведение раствора с влиянием повышения давления на равновесие диссоциации газообразного аммиака, рассмотренным в гл. 4. [c.233]

    Исследования зависимости масс-спектров от кинетичес кой энергии электронов показали, что относительные вероятности обра,чова)[ИЯ осповпых ионов в масс-спектре сравнительно слабо зависят от кинетической энергии в диапазоне от нескольких десятков электронвольт до десятков килоэлектронвольт. Обычные масс-спектры получены при давлениях 10 - тср и ниже. При использовании этих спектров для предсказания путей радиационно-химических процессов, происходящих при значительно боле( гысоких давлениях, существенно соотпошение между временем диссоциации в временем столкновения иона с молекулой. Если распад происходит в момент столкновения, то в дальнейшие реакции будут вступать те самые осколочные ионы (и, конечно, нейтральные осколки), которые известны из масс снег тральных данных. В противном случае в реакцию будет вступать возбужденный, еще не успевший распасться молекулярный поп. [c.186]

    Реакции отрицательных ионов с молекулами [2561 ипучены менее детально, нежели реакции положительных ионов. В общем можно утвержать, что основные кинетические закономерности в обоих случаях одинаковы. [c.194]

    Влияние среды на кинетику реакций с участием нонов. Насколько велика роль среды, в которой протекает ионная реакция, можно видеть из следующего примера. Распад молекулы НС1 в газовой фазе на атомы водорода и хлора требует затраты тепла 103 ккал/моль, а распад на ионы Н и С — 330 ккал/моль, поэтому раопад на ионы неосуществим. При растворении же НС1 в воде легко идет диссоциация НС1 на ионы. Затраты энергии на разрыв связи Н —С1" компенсируются в этом случае взаимодействием ионов с молекулами воды, и из значения энергии разрыва связи видно, что взаимодействие это очень сильное. [c.162]

    Если сырье не содержит олефинов, то реакция вследствие трудности инициирования цепи при отрыве гидрид-иона от молекулы н-параф ина не идет. Влияние олефина и НВг на изомеризацию м-бутана в присутствии А1Вгз при 25 °С видно из следующих данных  [c.232]

    Раопад карбоний-ионов приводит к образованию побочных продуктов реакции —парафинов с меньшим, чем у исходного, числом атомов углерода в молекуле (первично при распаде карбоний-иона образуется молекула олефина, гидрирующаяся затем до соответствующего парафина). [c.238]

    Второй вопрос, рассматриваемый в настоящей работе, — поиски метода увеличения селективности в дополнение к уже известным и лспользуемым в нефтепереработке приемам — таким, например, как улучшение перемешивания, увеличение отношения изобутана к олефину, снижение температуры и изменение объемной скорости подачи олефина. Один из путей разрешения поставленной задачи заключается в нахождении скорости лимитирующей стадии. Авторы стараются доказать, что гидридный перенос от молекулы третичного парафина протекает в общем случае медленно, и может рассматриваться как стадия, определяющая общую скорость процесса. То, что отрыв катионом гидрид-иона от молекулы изобутана протекает медленно по сравнению с другими возможными процессами (депротонирование и некоторые реакции изомеризации), следует также из рассмотрения данных по исследованию реакций обмена [4—11]. [c.14]

    Таким образом, прямым путем получения носителя цепи (трет-бу-тилкарбоний-ион) является алкилирование изобутана изобутиленом (реакция 1). Если в инициировании цепи участвует бутилен с прямой цепью или пропилен, требуется еще одна ступень для возникновения грег-бутилкарбоний-иона, а именно отрыв гидрид-иона от молекулы изобутана с одновременным образованием -парафина (реакции 2, 2а, 3, За). Последовательность указанных реакций часто называют также реакциями переноса водорода или гидрид-иона подробнее они рассмотрены ниже. [c.34]

    Развитие цепи. На этой стадии молекула олефина реагирует [7] с грег-бутилкарбоний-ионом. В результате возникает новый, более крупный ион, который либо подвергается изомеризации, либо отрывает гидрид-ион от молекулы изобутана (в некоторых случаях образующийся ион может присоединять еще одну молекулу олефина эта реакция рассмотрена на стр. 39). При отрыве гидрид-иона регенерируется новый грег-бутилкарбоний-ион и одно- [c.34]


Смотреть страницы где упоминается термин Ионы реакции с молекулами: [c.308]    [c.424]    [c.450]    [c.463]    [c.108]    [c.338]    [c.385]    [c.256]    [c.176]    [c.191]    [c.169]    [c.483]    [c.503]    [c.602]    [c.42]    [c.121]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние диэлектрической постоянной растворителя на скорости реакций ионов и полярных молекул

Влияние растворителя на скорость реакций между ионами и дипольными молекулами

Влияние солей на реакции между ионами и нейтральными молекулами в водных растворах

Влияние солей на реакции между ионами и нейтральными молекулами в жидком сернистом ангидриде

Конкуренция цепных молекулярных и ионных реакций Конкуренция цепных реакций с реакциями между насыщенными молекулами

Константы скорости быстрых реакций между молекулами или между ионами

Молекула ионная

Об относительных вкладах сольватации нейтральных молекул и ионов в термодинамику реакций

Окислительно-восстановительные реакции ионов с молекулами

Полярные молекулы, реакции с ионам

Полярные молекулы, реакции с ионам влияние диэлектрической проницаемости

Полярные молекулы, реакции с ионам уравнение для скорости

Реакции в растворе между молекулами и ионами

Реакции ионов с дипольными молекулами

Реакции между ионами и нейтральными молекулами

Реакции между ионами и полярными молекулами

Реакции полимеров с малыми молекулами и ионами

Сводка реакций ионов и возбужденных молекул

Скорости реакций диссоциации молекул н Ионов

Характерные реакции атомов, ионов и молекул



© 2024 chem21.info Реклама на сайте