Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярные молекулы, реакции с ионам

    Скорость реакции в растворе может существенно зависеть от диэлектрической постоянной растворителя. Степень электростатического взаимодействия ионов, полярных молекул и ионов с полярными молекулами определяется диэлектрической постоянной среды, поэтому и константа скорости реакции между этими частицами зависит от диэлектрической постоянной. Эта зависимость выражается уравнением Скетчарда [c.347]


    Степень электростатического взаимодействия ионов, полярных молекул и ионов с полярными молекулами определяется диэлектрической постоянной среды, поэтому и константа скорости реакции между этими частицами зависит от диэлектрической постоянной. Эта зависимость выражается уравнением [c.342]

    Реакции между ионами и полярными молекулами 457 [c.457]

    Жидкие растворы-очень удобная среда для протекания химических реакций. Благодаря быстрому смешиванию жидкостей предполагаемые реагенты часто сближаются друг с другом, поэтому столкновения их молекул и, следовательно, химические реакции могут осушествляться гораздо быстрее, чем это происходит в кристаллическом состоянии. С другой стороны, данное число молекул в жидкости помещается в меньшем объеме, чем то же число молекул в газе, поэтому реагирующие между собой молекулы в жидкости имеют больше шансов вступить друг с другом в контакт. Вода-особенно подходящий растворитель для проведения химических реакций, поскольку ее молекулы полярны. Молекулы Н2О, а также ионы Н и ОН , на которые вода диссоциирована в небольшой степени, могут способствовать поляризации связей в других молекулах, ослаблять связи между атомами и инициировать химические реакции. Не случайно зарождение жизни на Земле произошло в океанах, а не в верхних слоях атмосферы или на суше. Если бы жизнь была вынуждена развиваться посредством реакций между веществами в кристаллическом (твердом) состоянии, 4,5 миллиарда лет прошедшей до сего времени истории Земли едва хватило бы на то, чтобы этот процесс мог начаться. [c.76]

    Равновесия в водных растворах. Неионные и ионные реакции. Гидратация ионов. Полярность молекул и растворение. [c.206]

    О—Н, в результате чего он приобретает небольшой отрицательный заряд, а на атомах водорода создаются небольшие положительные заряды. По этой причине вода может взаимодействовать с другими полярными молекулами. Кроме того, молекулы воды в небольшой степени диссоциируют на ионы Н и ОН , а это свойство играет важную роль в кислотно-ос-новных реакциях. В этой главе будут рассмотрены реакции и равновесия в водных растворах главным образом с участием кислот и оснований. [c.208]

    Прп переходе от реакций неполярных молекул к реакциям между ионами или полярными молекулами механизмы элементарных стадий резко меняются. Действительно, силы электростатического взаимодействия имеют другой порядок и в отношепии масштаба расстояний, п в отношении абсолютных значений, поскольку вандерваальсовы сплы уменьшаются с расстоянием по закону 1/Р, тогда как электростатические — по закону 1/Р. [c.33]


    Изложенный выше подход для определения влияния растворителя на скорость ионных реакций был применен и к реакциям между ионами и полярными молекулами. Исходя из электростатических представлений, Кирквуд [16] вывел уравнение изменения свободной энергии при сольватации сферической полярной молекулы радиусом г и динольным моментом [c.37]

    В г е те р о л и т и ч е с к и X реакциях не Происходит разрушения и возникновения электронных пар, а взаимодействие происходит за счет электронов, которые уже были спаренными до реакции. Такие реакции почти ие наблюдаются в газах, но являются характерными для растворов — большие диэлектрические постоянные многих растворителей понижают электростатическое притяжение ионов, а электрические поля полярных молекул растворителя способствуют поляризации диссоциирующей связи. Таким образом, гетерополярные реакции протекают с существенным перераспределением зарядов между реагирующими частицами и образование активированного комплекса при этом сопровождается значительной перестройкой сольватных оболочек. Поэтому скорость гетеро-литических реакций, в противоположность гомолитическим, существенно зависит от природы растворителя, и известно множество реакций, которые вообще не идут без растворителя. Скорость реакции [c.341]

    При погружении металла в раствор начинается сложное взаимодействие металла с компонентами раствора. Наиболее важной реакцией является взаимодействие поверхностных ион-атомов металла, находящихся в узлах решетки, с полярными молекулами воды, ориентированными у поверхности электрода. В результате взаимодействия происходит окисление металла и его гидратированные ионы переходят в раствор, оставляя в металле электроны, заряд которых не скомпенсирован положительно заряженными ионами в металле  [c.184]

    В молекуле окиси углерода между углеродом и кислородом действуют две ковалентные связи С 0 Электронные пары несколько смещены к более отрицательному кислороду, в результате чего молекула становится малополярной с дипольным моментом 0,12D. Полярность молекулы и наличие у атома углерода свободной пары электрона объясняет способность молекулы к реакциям комплексообразования. Оксид углерода может ыть лигандом по отношению к положительному иону металла и нейтральному атому d-элемента в последнем случае образуются карбонилы металлов. Карбонилы делятся на одноядерные, содержащие один атом металла [Сг(СО)б], [Ре(С0)5] и др., и многоядерные, содержащие от 2 до 4 атомов металла [Fe2( 0)eJ, [ o2(GO)g], [Rh4( 0)iJ, [RUg( 0)i2] и др. Координативная связь возникает за счет пары электронов углерода молекулы СО. Особенно легко образуют карбонилы металлы подгрупп хрома, марганца и 8В группы. Карбонилы, как правило, либо жидкости, либо летучие твердые вещества. При нагревании карбонила координативная связь разрывается и происходит разложение на окись углерода и металл [Ni( 0)4l = Ni + 4С0. Этим пользуются для получения чистых металлов, для нанесения металлической поверхности на тела, имеющие сложный рельеф. Карбонилы металлов 8В группы часто применяют в качестве катализаторов. Карбонилы железа используют в качестве антидетонаторов моторного топлива. [c.479]

    Наиболее полярным из обычных растворителей является вода. Как уже известно из предыдущего (V 4), действие ее на внутримолекулярные связи сказывается настолько сильно, что многие полярные молекулы распадаются на ионы, обменные реакции между которыми протекают практически моментально. Даже в виде следов вода оказывается необыкновенно активным и разносторонним катализатором. Например, при полном ее отсутствии хлор не действует на металлы, фтористый водород не разъедает стекло, натрий и фосфор не окисляются на воздухе и т. д. Подобным же образом следы водяного пара сильно катализируют некоторые реакции разложения (СЬО и др.). Можно сказать, что если бы мы изучали вещества при полном отсутствии воды, то наши представления о химических свойствах многих элементов и соединений были бы совершенно иными, чем в настоящее время. [c.346]

    Ионная связь является предельным случаем полярной связи, так как при соединении элементов с малой электроотрицательностью (металлы) и высокой электроотрицательностью (кислород, сера, галогены) полярность молекулы возрастает настолько, что электроны атомов металла почти целиком переходят к атомам неметалла. Таким образом, теории, развитые Писаржевским и Косселем, о переходе электрона с атома одного элемента на атом другого в процессе химической реакции находят подтверждение. Ниже приведены электрические моменты соединений, содержащих металлические элементы  [c.83]

    Молекулы НР — типичные полярные молекулы, способные образовать димеры главным образом за счет объединения диполей, а молекул КР практически не существует, потому что в результате химической реакции получается кристалл, построенный из ионов К+ и Р-. [c.84]


    В пооледние годы появилось много работ, посвященных исследованию неравновесных процессов на границе раздела фаз. Они играют важную роль в реальных процессах испарения-копденсации [I] поверхнос гной диффузии в биологических мембранах [2, 3] в переносе зарядов через поверхность при коррозии металлов [4] и в ряде биологических процессов [5-7] при химических реакциях на поверхаости [8-10] сложных явлениях переноса [И, 12, 13] конвекции на поверхности и эффекте Марангони [14, 15] и 1. д-. Неравновесное состояние поверхности при этом кожет характеризоваться I) отсутствием механического равновесия 2). отсутствием теплового равновесия 3) отсутствием адсорбционно-диф-фузионного равновесия 4) отсутствием поляризационного равновесия (ориентация полярных молекул, образование ионного двойного слоя) 5) протеканием химических реакций. [c.191]

    Некоторые указания на важность взаимодействия молекул в растворах дает тот факт, что из многих тысяч реакций, которые были изучены в растворе, менее чем 20 могут быть изучены для сравнения в газовой фазе. Изучение ионных реакций почти полностью ограничивается растворами по вполне понятным причинам при температурах ниже 1000° К скорость ионных процессов в газовой фазе практически равна нулю. Это объяснение приемлемо для большинства реакций, протекающих в растворах, поскольку, как показано далее, в большинстве реакций между полярными молекулами принимают участие ионы в качестве промежуточных частиц. Например, такая широко известная реакция, как гидролиз амилгалогенов или эфиров в газовой фазе, идет неизмеримо медленно (по крайней мере до тех температур, пока не начинают преобладать другие направления реакции). Единственный большой класс реакций, которые можно изучать как в газовой, так и в жидкой фазе,— свободно-радикальные реакции. Несомненно, этот тип реакций в дальнейшем будет все более тщательно изучаться и даст богатый материал для сравнения кинетического поведения веществ в газовой и жидкой фазах .  [c.423]

    Влияние растворителей на реакции, в которых принимают участие ионы, рассматривалось рядом автором [55], однако достаточного количественного совпадения результатов теоретических расчетов с опытными данными получено не было. Важную роль, несомненно, играет отсутствие как теоретических, так и аксперимейтальных сведений о поведении полярных молекул в полях вблизи ионов. Задача заключается в том, чтобы определить, каким образом активности заряженных частиц меняются с изменением диэлектрической проницаемости среды. [c.455]

    Для случая реакций между ионом и полярной молекулой использовались различные приближения. Простейшее из них состоит в подсчете куло-новской энергии активированного комплекса, образованного ионом с зарядом 2а8 и диполем гв [65]. Используя уравнение (XV.6.6) и пренебрегая поляризацией частиц, получаем [c.458]

    Иаппые твердые вещества. Ветцсства тина Na l с решеткой, построенной из регулярно чередуюш,ихся положительных и отрицательных ионов. Иа поверхностях и в углах таких твердых тел электрические ноля весьма велики. Можно ожидать, что такие вещества будут облегчать протекание ионных реакций II реакций между полярными молекулами. [c.532]

    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Характер промежуточных соединений с катализатором различен. Для кислотно-основных реакций, когда электронные пары перемещаются без разобщения электронов (гетеролитический разрыв валентных связей) — это комплексы типа солей для окислительно-восстановительных реакций, когда электронные пары разделяются (гомолити-ческие или радикальные реакции), это, как правило, комплексы с участием молекул или ионов, содержащих металлы переменной валентности. К первой группе относятся процессы, в которых катализатором служат кислоты или основания это реакции присоединения (отщепления) полярных молекул. Ко второй группе относятся процессы, в которых катализаторами служат ионы -элементов или образованные ими комплексы (в частности, реакции с участием атомов И или О). В последних перенос электрона [c.123]

    Поскольку уравнение Дебая — Гюккеля является приближенным и верно лишь для сильно разбавленных растворов, то и уравнение (П1.46) может рассматриваться лишь как приближенное. В частности, при значительной ионной силе может наблюдаться некоторый солевой эффект и в реакциях с участием эле1стронейтральных полярных молекул, а величины первичных солевых эффектов для реакций между ионами будут отличаться от вычисленных по уравнению (111.46). [c.117]

    Изменение концентраций реагентов не меняет свойств среды и физического состояния частиц реагентов. Это условие часто нарушается для жидкофазных реакций, с участием ионов и полярных молекул. Изменение концентрации реагента, диссоциирующего на ионы, может изменить ионную силу и pH раствора, что отразится на скорости реакции. [c.25]

    Из характера реакции сразу же следует, что переход ко все более полярным растворителям должен резко повышать скорость замещения вследствие ускорения соль-ватолитического распада исходной молекулы на ионы. Независимость определяющей скорость реакции медленной стадии диссоциации от концентрации нуклеофила может быть использована для определения характера реакции изменение концентрации Z не должно существенно сказаться на скорости замещения S.vi и будет влиять на скорость замещения 5д-2. Добавление иона X" будет замедлять скорость 5л 1-процесса, смещая равновесие диссоциации влево. Так, при гидролизе алкилхлоридов повышение концентрации ионов С1" тормозит процесс (солевой эффект). Если при переходе от одного радикала R к другому электронодонорные свойства R нарастают, то сольватолитический распад молекулы облегчится, и скорость замещения Saj возрастет. Если же процесс идет по механизму 2, то скорость замещения замедлится, поскольку нуклеофильный заместитель Z встретит в таком случае большее противодействие со стороны группы R. Отрицательный знак реакционной константы р для реакции сольволиза бензгидрилхлоридов дает важную информацию о том, что процесс течет по механизму 5лп, а не 5a 2 [c.192]

    Достаточно указать, что она определяет равновесие и скорость растворения твердых и жидких веществ, разнообразных химических превращений в растворах и.т. д. Сольватация приводит, с одной стороны, к изменению природы реагирующих частиц (образованию сольватокомплексов, перераспределению ионного заряда, поляризации, блокированию реакционных центров и т. п.), с другой — структуры растворителя и его свойств. Своеобразно проявление сольватации в явлениях химической кинетики. Здесь сольватация исходных веществ, переходного комплекса и продуктов реакции определяет не только скорости и другие кинетические параметры рва кций, но также и их механизмы. Следует отметить, что учет и детальный анализ сольватационного взаимодействия растворителя с переходным комплексом необходим для построения теории реакционной способности молекул и ионов. Так, например, издавна считается, что полярный растворитель благоприятствует протеканию химических реакций, переходный комплекс которых более полярен, чем исходное состояние реагентов. [c.237]

    Благодаря полярности молекул воды в ней растворяются и диссоциируют многие ионные и ковалентные вещества типа оснований, кислот и солей, больщинство солей вступают с водой в реакции обратимого гидролиза. Вода как растворитель способствует протеканию огромного числа обменных и окислительно-восстановительных реакций между веществами. Со многими безводными солями вода образует кристаллогидраты один из методов обнаружения воды основан на переходе во влажной атмосфере белого сульфата меди(11) USO4 в голубой медный купорос uS04-5H20. [c.112]

    Благодаря полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим неводным растворителем. Жидкий аммиак положил начало химии неводных растворов. Результаты исследования поведения веществ в жидком аммиаке дали возможность построить обобщенную теорию кислот и оснований, открыли перед химией новые пути проведения реакций синтеза ранее неизвестных веществ и т. д. В жидком аммиаке хорошо растворяются щелочные и щелочно-земельные металлы, сера, фосфор, иод, многие соли и кислоты. Вещества с функциональными полярными группами в жидком аммиаке подверга-]отся электролитической диссоциации. Однако собственная ионизация аммиака 2ЫНа(ж) ЫН - -ЫН2 ничтожно мала и ионное произведение [NHi] lNH.r]= 10 - при —50 °С. [c.249]

    Ион Мп + в растворе образует аквакомплексы, окрашивающие раствор в слабо-розовую окраску. Координационное число в этих комплексных соединениях К = Ь- Лигандами служат полярные молекулы воды. Из солей иона в воде плохо растворимы МпСОз, МпЗ, Мпз(Р04)2. Остальные соли растворимы. МпО и его соли в реакциях являются восстановителями  [c.356]

    Природа реагирующих веществ. Здесь большую роль играют как внутримолекулярные (химические), так и меж-молекулярные (ван-дер-ваальсовы) силы. Вещества с неполярными молекулами, как правило, реагируют между собой наименее быстро. Это является результатом прочности внутримолекулярных связей и сравнительной слабости межмо-лекулярных сил. С другой стороны, полярные вещества в водных растворах чрезвычайно быстро взаимодействуют между собой в виде ионов. При значительных силах взаимодействия между молекулами реагирующих веществ скорость реакции возрастает. Полярность молекул является важным фактором именно в этом отношении. [c.27]

    Надо иметь в виду, что ряд напряжений позволяет судить о восстановительной способности металлов, об их химической активности лишь в окислительно-восстановительных реакциях, протекающих в водной среде, В сухих реакциях цезий значительно активней лития. Например, на воздухе цезий самовоспламеняется, а с питием этого не происходит. В реакциях натрий более активен, чем кальций. Это находится в соответствии о их положением в периодической системе. Однако в вод-яой среде, судя по электродным потенциалам, восстано-зительная способность натрия меньше, чем у кальция, -1есмотря на то, что Сб+ и имеют одинаковые заря-1ы, радиус Ы+ значительно меньше (ион лития со дер-кит всего один электронный слой, а ион цезия — пять )лектронных слоев). Поэтому полярные молекулы воды фитягиваются к иону лития на поверхности металла начительно сильнее, чем к С5+. Это облегчает переход 1ИТИЯ в раствор. Следовательно, изменение восстанови- ельной способности этих металлов в водной среде не оответствует изменениям нх активности на воздухе. [c.393]


Смотреть страницы где упоминается термин Полярные молекулы, реакции с ионам: [c.74]    [c.200]    [c.127]    [c.219]    [c.237]    [c.153]    [c.132]    [c.34]    [c.166]   
Основы химической кинетики (1964) -- [ c.457 , c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние диэлектрической постоянной растворителя на скорости реакций ионов и полярных молекул

Ионы реакции с молекулами

Молекула ионная

Полярность молекул

Полярные молекулы

Полярные молекулы, реакции с ионам влияние диэлектрической проницаемости

Полярные молекулы, реакции с ионам уравнение для скорости

Реакции между ионами и полярными молекулами



© 2025 chem21.info Реклама на сайте