Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфоглицерат

    Превращение 2-фосфоглицерата в фосфоенолпируват является второй реакцией гликолиза, в результате которой образуется соединение с макроэргической связью  [c.53]

    При рассмотрении путей биосинтеза важно идентифицировать хотя бы некоторые из промежуточных продуктов (интермедиатов). Один из них — 3-фосфоглицерат. Поскольку 3-фосфоглицерат является первичным продуктом фотосинтеза, он вполне законно может рассматриваться как исходное вещество, из которого образуются все остальные углеродсодержащие соединения. В большинстве организмов фосфоглицерат может легко превращаться в глюкозу и фосфоенолпируват, которые в свою очередь могут вновь давать фосфоглицерат. Любое из этих трех соединений может служить предшественником при синтезе других органических соединений. Первая стадия биосинтеза включает реакции, в результате которых образуется 3-фосфоглицерат (или фосфоенолпируват) либо из СО2, формиата, ацетата и липидов, либо из полисахаридов [c.457]


    Дальнейшие стадии биосинтеза от 3-фосфоглицерата до несметного числа обнаруживаемых в клетках различных соединений — аминокислот, нуклеотидов, липидов и т. д — очень сложны и многочленны. На рнс. 11-1 показано происхождение многих соединений, и в частности двадцати аминокислот (из которых построены все белки), нуклеотидов и липидов. Из дополнительных ключевых предшественников биосинтеза, которые можно видеть на приведенной схеме, хотелось бы обратить особое внимание на глюкозо-6-фосфат, пируват, оксалоацетат, ацетил-СоА, а-кетоглутарат и сукцинил-СоА. [c.457]

    В следующих разделах мы рассмотрим (специфические пути биосинтеза 3-фосфоглицерата — трехуглеродного соединения, из которого могут быть синтезированы все остальные вещества, участвующие в метаболизме. [c.474]

    Живые организмы не могут существовать без энергии, и поэтому в цепи реакций брожения наиболее важное значение имеет реакция, обусловливающая образование АТР. В случае молочнокислого брожения и в большинстве других типов брожения такой реакцией является окисление глицеральдегид-З-фосфата в 3-фосфоглицерат. Окисление альдегида в карбоновую кислоту — реакция сильно экзергоническая, сопряженная с синтезом АТР. Поскольку из каждой молекулы глюкозы образуются две молекулы триозофосфата, при брожении на каждую молекулу израсходованной глюкозы образуются две молекулы АТР. Этого вполне достаточно для поддержания жизни у бактерий, если достаточно количество сбраживаемого сахара. Анаэробное превращение глюкозы в лактат — лишь один из примеров множества различных процессов брожения, которые мы рассмотрим в гл. 9. [c.85]

    Отношение [ATP]/fADP]i для активно дышащей дрожжевой клеткн равно 10. При каком отношении [3-фосфоглицерат]/[1,3-дифос-фоглиперат], в клетке фосфоглицераткиназная реакция (рис. 9-7 реакция 7) будет смещена в сторону синтеза 1,3-дифосфоглицерата (при 25 "С, pH 7)  [c.239]

    Дегидратация 2-фосфоглицерата, приводящая к образованию фосфо-енолпирувата, фосфорилированного производного енольной формы пи-ровиноградной кислоты, катализируется ферментом енолазой и является [c.148]

    Рассмотрим теперь стадию а реакции (11-9), т е реакцию окисления глицеральдегид-З-фосфата, требующую присутствия ADP и Р[ (рис. 8-13). Экспериментальные данные показывают, что в цитоплазме эта реакция также находится в состоянии равновесия. В серии опытов соотнощение [ATP]/[ADP] [Pi], характеризующее состояние фосфорилирования, оказалось равным 709, тогда как соотнощение [3-фосфоглицерат]/[глицеральдегид-З-фосфат] составило 55,5. Суммарная константа равновесия для стадии а в реакции (11-9) выражается следующим образом  [c.469]

    В какие положения включится С через несколько секунд после начала фотосинтеза, идущего в присутствии СОа, в следующих молекулах а) 3-фосфоглицерате, б) фруктозо-6-фосфате, в) сери-не, г) оксалоацетате  [c.76]

    Окисление 3-фосфоглицерата в пировиноградную кислоту. Здесь также образуются 2 АТФ. [При гликолитичегком (без участия кислорода) периоде дыхания организма на одну молекулу глюкозы образуются 4 молекулы АТФ, две из которых расходуются на ее фосфорилирование.] [c.262]


    Реакцию катализирует фермент фосфопируватгидратаза (енолаза, КФ" 4.2.1.11). Фермент ингибируется фторидом (конечная концентрация фторида 0,02 М) особенно в присутствии фосфата. Считают, что ингибирующее влияние оказывает Mg2+-фтopфo фaтнь[й комплекс. Таким образом, добавление в инкубационную среду фторида прерывает гликолиз на стадии превращения фосфоглицериновых кислот и приводит к накоплению 3-фосфоглицерата. В этих условиях образования скольких-либо заметных количеств молочной кислоты не происходит. [c.54]

    Фосфофруктокиназа — один из ключевых ферментов, регулирующих процесс гликолиза в целом. Активной формой фермента является тетрамер, состоящий из 4 субъединиц с молекулярной массой 83 000 Да каждая. В зависимости от условий тетрамеры могут превращаться в высокополимерные агрегаты или диссоциировать на неактивные димеры и мономеры. Фосфофруктокиназа является аллостерическим ферментом. К числу аллостерических эффекторов относятся субстраты (АТФ, фруктозо-6-фосфат) и продукты реакции (АДФ, фруктозо-1,6-дифосфат), а также такие метаболиты, как АМФ, цАМФ, цитрат, фруктозо-2,6-дифосфат, фосфокреатин, 3-фосфоглицерат, 2-фосфо-глицерат, фосфоенолпируват, ионы МН4+, К+, неорганический фосфат и др. [c.238]

    Аминокислота серин получается почти непосредственно из 3-фосфоглицерата, аспартат — из оксалоацетата, а глутамат — из а-кетоглутарата. Каждая из этих трех аминокислот дает начало семейству других соединений [1]. Сравнительно небольшие усилия, затраченные на то, чтобы понять и запомнить соотношения между разными семействами, могут значительно облегчить изучение биохимии. Наряду с сериновым, аспартатным и глутамат-кетоглутаратным семействами отметим большое четвертое семейство, ведущее свое начало непосредственно от пирувата, и пятое семейство (состоящее в основном из липидов), которое происходит от ацетил-СоА Ароматические аминокислоты образуются из эритрозо-4-фосфата и фосфоенолпирувата, причем роль ключевого про межуточного соединения играет хоризмовая кислота [уравнение (7-50)]. Другие семейства ведут свое начало от глюкозо-6-фосфата и от пентозо- [c.457]

    Молекулярная масса 3-фосфоглицераткиназы равна 47 000 Да фермент представляет собой одну полипептидную цепь, состоящую из 420 аминокислотных остатков. 3-Фосфоглицераткиназа из мышц кролика содержит семь SH-rpynn. Она ингибируется ионами тяжелых металлов и SH-реагентами, тогда как фермент из дрожжей имеет лишь одну SH-rpynny, модификация которой не влияет на активность. Ионы Mg2+ и Мп2+ являются активаторами. Константы Михаэлиса для 3-фосфоглицерата — 0,2 мМ, для 1,3-дифосфоглицерата — 1,8 мкМ, для АТФ — 0,1 мМ для АДФ — 0,2 мМ для Mg2+ — 0,2 мМ. [c.260]

    КОН — 10 мМ раствор, доведенный трицином до pH 7,9 и содержащий 0,5 мМ 3-фосфоглицерат. [c.263]

    В то время как превращение пирувата в ацетил-СоА и окисление последнего приводит к полному сгоранию глюкозы до двуокиси углерода и воды, существует другой вариант гликолитического пути, в случае которого брожение сахаров происходит в отсутствие кислорода. Например, молочнокислые бактерии могут восстанавливать пируват в лактат за счет NADH (на рис. 7-1 слева внизу). Заметим, что эта реакция восстановления в точности сбалансирована с предшествующей стадией окисления, т. е. со стадией окисления глицеральдегид-З-фосфата в 3-фосфоглицерат. При сбалансированной последовательности реакции окисления и последующей реакции восстановления превращение глюкозы в лактат, т. е. брожение, может протекать в отсутствие кислорода, т. е. без переноса электронов в дыхательной цепи. [c.85]

    При поглощении хлоропластами СО2, меченного С, первым органическим соединением, в котором обнаруживается радиоактивная метка, оказывается 3-фосфоглицерат. Две молекулы этого соединения образуются под действием присутствующего в хлоронластах фермента рибулозо-1,5-дифосфат — карбоксилазы (в листьях шпината его содержание составляет 16% общего количества белка). Этот фермент содержится в зеленых растениях, а также в пурпурных и зеленых бактериях. Реакция, катализируемая данным ферментом, отличается от других реакций карбоксилирования тем, что продукт карбоксилирования расщепляется тем же самым ферментом. Структура субстрата, к которому фермент проявляет абсолютную специфичность, не допускает образования наблюдаемого продукта путем прямого р-карбоксилирования. На основании косвенных доказательств было сделано предположение о реализации следующего механизма  [c.175]

    Последующий перенос 1-фосфатной группы на ADP является важной энергодающей стадией в общем обмене веществ (гл. 8, разд. 3,5).В том случае, когда вместо фосфата используется арсенат, образующийся ациларсенат (1-арсено-3-фосфоглицерат) гидролизуется с образованием 3-фосфогли-церата. Таким образом, в присутствии арсената окисление глицеральдегид-З-фосфата не прекращается, но синтеза АТР при этом больше не происходит. Иными словами, арсенат разобщает процессы фосфорилирования и окисления. Арсенат может частично заменять фосфат в стимуляции дыхания митохондрий, разобщая при этом окислительное фосфорилирование (гл. 10, разд. Д, 5). [c.82]


    Образующаяся перекись расщепляется при гидролитическом действии фермента до фосфогликолата и 3-фосфоглицерата. Несмотря на то что это предположение является общепринятым, оно все же кажется неубедительным. Молекулярный кислород обычно не способен быстро реагировать с органическими субстратами (известны лишь немногие исключения, например дигидрофлавины гл. 8, разд. И, 7), если не считать тех случаев, когда в реакции участвуют ионы переходных металлов (гл. 10, разд. Б,3). Дальнейшее исследование необычной реакции, катализируемой рибулозодифосфат-карбоксилазой, несомненно, представит большой теоретический я практический интерес последний связан с тем, что эта реакция имеет большое значение в снижении выхода фотосинтеза (гл. 13, разд. Д, 9). [c.176]

    РИС. 8-13. Синтез АТР, сопряженный с окислением альдегида в карбоновую кислоту (реакция типа 59В). Наиболее важной из извествых реакций этого типа явлиетси окисление глицеральдегид-З-фосфата до 3-фосфоглицерата (рис. 9-7). Другие важные реакции фосфорилирования на субстратном уровне> приведены на рис. 8-4, 8-19 и8-21. [c.247]

    Превращение глюкозы в пируват требует участия десяти ферментов (рис. 9-7). Вся последовательность реакций может быть разбита на четыре стадии подготовка к разрыву цепи (реакции 1—3), разрыв цепи и установление равновесия между трнозофосфатами (реакции 4 п 5), окислительное образование АТР (реакции б и 7) и превращение 3-фосфоглицерата в пируват (реакции 8—10). [c.336]

    Превращение 3-фосфоглицерата в пируват начинается с переноса фосфорильной группы от кислорода при С-3 на кислород при С-2 (реакция 5) с последующим дегидратированием путем обычного а,Р-элими-нирования, катализируемого енолазой (реакция 9). Образовавшийся продукт фосфоенолпируват (РЕР гл. 7, разд. К, 3, г) является высокоэнергетическим соединением, фосфорильная группа которого может быть легко перенесена на ADP (под действием фермента пируватки-назы) остающийся при этом енол пировиноградиой кислоты (на рис. 9-7 он помещен в квадратные скобки) самопроизвольно превращается в значительно более устойчивый пируват-ион (сравните с уравнением 7-59). Поскольку на каждую молекулу глюкозы образуются две молекулы РЕР, этот процесс восполняет затрату двух молекул АТР, происходящую на начальных стадиях образования фруктозо-1,6-дифосфата из глюкозы. [c.338]

    Одна молекула 2,3-дифосфоглицерата связывается с одним тетрамером гемоглобина в дезокси-форме с константой A = l,4 10 По сравнению с окси-формой она обладает приблизительно вдвое меньшим сродством [74]. Рентгеноструктурные данные указывают на то, что 2,3-ди-фосфоглицерат присоединяется между двумя (З-цепями дезокспгемогло-бина непосредственно в том месте, где проходит ось симметрии 2-го порядка (рис. 4-19) [71]. Уже давно известно, что гемоглобин цельной крови обладает меньшим сродством к кислороду, чем изолированный [75, 76] (рис. 4-18). Теперь мы видим, что такое различие обусловлено присутствием в эритроцитах 2,3-дифосфоглицерата. Этот факт очень важен, поскольку эритроциты могут при этом отдавать тканям большую долю переносимого ими кислорода. Содержание дифосфоглицерата в эритроцитах варьирует в зависимости от физиологических условий — у людей, живущих в высокогорных районах, его концентрация выше [76]. Высказывалось предположение, что искусственное изменение концентрации этого регуляторного вещества в эритроцитах можно использовать в клинике при нарушениях в системе переноса кислорода. Присутствие 2,3-дифосфоглицерата в эритроцитах характерно не для всех видов у птиц и черепах его заменяет, по-видимому, инозитпентафос-фат. [c.313]

    Даже у человека существует несколько типов гемоглобина. Кроме миоглобина и гемоглобина А ( 2 2) у взрослых, известен также минор-,ный гемоглобин kiiaibi). В крови человеческого плода содержится другой тип гемоглобина — гемоглобин F ( 2 2). В присутствии 2,3-ди-фосфоглицерата он обладает более высоким сродством к кислороду, чем гемоглобин А, что способствует выполнению его функции — снабжению плода кислородом. Через несколько месяцев после рождения гемоглобин F исчезает и заменяется гемоглобином А. Гемоглобины человека различаются по аминокислотному составу и последовательности. У других видов аминокислотный состав гемоглобинов различается еще сильнее. Взаимодействия между субъединицами также варьируют, а у одного из типов гемоглобинов, эритрокруоринов, обнаруживаемых у некоторых беспозвоночных, имеется 192 субъединицы [79]. [c.314]

    Возможность восстановления оксипирувата до фосфоенолпирувата (рис. 11-5) зависит от наличия АТР эта реакция, точно так же, как и в случае гликолиза (рис. 9-7), может быть осуществлена путем восстановления до 3-фосфоглицерата с последующей изомеризацией до 2-фосфоглицерата и элиминированием, приводящим к образованию РЕР. Превращение малата в ацетат и глиоксилат через малил-СоА (гл. 7, разд. К, 2,3) приводит к образованию ацетата в качестве продукта реакции и сопровождается регенерацией глиоксилата. Так же как и в других метаболических циклах, различные промежуточные продукты, например РЕР, могут извлекаться и поступать в другие биосинтетические циклы. Однако при этом важно иметь независимый путь получения регенерирующегося субстрата. Таким путем является его образование из ацетата (показанным на рис. 11-5), в котором используется циклический процесс, рассмотренный в предыдущем разделе. [c.479]

    Теперь сформулируем общее правило, согласно которому брожение может осуществляться в том случае, когда субстраты, состоящие преимущественно из атомов, связанныА одинарными связями, а также таких групп, как карбонильная, с довольно слабой резонансной стабилизацией, превращаются в продукты, содержащие карбоксильные группы, или в СОг. Принимая эффективность равной 30%, получим, что на каждую вновь образованную карбоксильную группу или молекулу СОг освобождается энергия, как раз достаточная для синтеза одной молекулы АТР. Следует, однако, иметь в виду, что для образования АТР должен еще существовать специальный механизм. Интересно отметить, что синтез АТР в большинстве случаев непосредственно связан с теми же химическими процессами, в результате которых при брожении образуются карбоксильные группы или молекулы СОг. Наиболее важной реакцией является окисление альдегидной группы глицеральдегид-З-фосфата в карбоксильную группу 3-фосфоглицерата (рис. 8-13). [c.347]


Смотреть страницы где упоминается термин Фосфоглицерат: [c.44]    [c.264]    [c.55]    [c.59]    [c.118]    [c.188]    [c.738]    [c.214]    [c.214]    [c.220]    [c.82]    [c.85]    [c.172]    [c.248]    [c.329]    [c.358]    [c.358]    [c.469]    [c.475]    [c.478]    [c.518]    [c.518]   
Биохимия Том 3 (1980) -- [ c.330 , c.337 ]

Биологическая химия Изд.3 (1998) -- [ c.331 , c.332 ]

Общая микробиология (1987) -- [ c.225 ]

Стратегия биохимической адаптации (1977) -- [ c.37 ]

Биохимия человека Т.2 (1993) -- [ c.183 , c.185 , c.197 , c.208 ]

Биохимия человека Том 2 (1993) -- [ c.183 , c.185 , c.197 , c.208 ]

Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.20 ]

Биологическая химия (2004) -- [ c.255 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.32 ]




ПОИСК







© 2024 chem21.info Реклама на сайте