Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спиновая плотность

    Ширина линий в спектре может по ряду причин различаться. Мы упоминали ранее, что спиновая плотность на протонах группы СН эти-ламина зависит от конформации. Временная зависимость этого типа процесса может повлиять на ширину линий различных протонов в молекуле различным образом. Быстрый обмен между различными конфигурациями ионной пары с анион- или катион-радикалом также может привести к большему уширению одних линий но сравнению с другими [256, 26]. [c.49]


    Гораздо сложнее применить результаты, полученные при расчетах молекулярных орбиталей, к сверхтонкому расщеплению от взаимодействия с атомами, отличными от атома водорода. В отличие от протонов, для которых характерны только описанные выше прямой и косвенный механизмы СТВ, на сверхтонкое расщепление от взаимодействия с С влияют и другие факторы 1) Неспаренные электроны на р(п)-орбитали могут поляризовать заполненные 2s- и Ь-орбитали того же самого атома. 2) Может иметь место прямая делокализация электронной плотности на 2.5-орбиталь а-радикала. 3) Спиновая плотность на соседнем атоме углерода за счет поляризации ст-связи С — С может вызывать появление спиновой плотности на 2л- и 2р-орбиталях углерода, резонанс которого поддается интерпретации. Расчеты [10—13] для сверхтонкого расщепления, вызываемого " К, 8 и оказались более успешными, чем в случае С. Так, удалось интерпретировать спектры кремнийсодержащих радикалов [13]. Обнаружено, что влияние спиновых плотностей на соседних атомах для этих ядер имеет меньшее значение, чем для ядер С. [c.29]

    Спектр ЭПР комплекса [(ННз)5Со - О - О - Со(ЫНз)5] представляет собой интересный пример того, как из данных о спиновой плотности и сверхтонком расщеплении можно получить сведения о структуре соединения. В данном случае можно предложить четыре варианта структуры 1) два атома кобальта(П1) связаны между собой кислородным мостиком О2 2) атомы кобальта(П1) и кобальта(1У) соединены между собой перекисным мостиком О2 i) два атома кобальта эквивалентны благодаря одинаковому взаимодействию одного неспаренного электрона с обоими атомами кобальта 4) электрон взаимодействует с обоими атомами кобальта, но в большей степени с одним, чем с другим. [c.51]

    При угловой структуре радикала спектр ЭПР в зависимости от общего числа электронов в системе и анизотропии образца имеет характерный вид, позволяя определять спиновую плотность на центральном атоме и оценивать валентный угол. Так, например, для радикала NO2 было получено значение валентного угла 133°, совпадающее в пределах ошибок с установленным прямыми экспериментальными методами (134°). В ион-радикале СО2" идентифицированном методом спектроскопии ЭПР в облученном формиате натрия, локализация неспаренного электрона на оказалась больше сравнительно с N в NO2 , что соответствует большему значению валентного угла (ближе к 180°). Эти выводы согласуются с особенностями реакционной способности этих частиц большая склонность ион-радикала O2 к димеризации, присоединение водорода к атому углерода, а не к кислороду, как в радикале NO2, и т. д. [c.69]

    Асфальтены являются высокомолекулярными гетероциклическими соединениями с высокой реакционной способностью, состоят из сильно конденсированных структур, богаты непредельными и представляют собой типичные коллоиды. Кроме того, в асфальтенах содержится наибольшая часть таких химически высокоактивных гетероатомов, как кислород, сера, железо, а также ванадий, никель, азот и титан в активной форме в виде порфириновых соединений. Строение кокса из асфальтенов отображает структуру исходных асфальтенов, так как распределение электрических (возможно, и спиновых) плотностей у исходного сырья оставляет свои следы [15] в виде структурных особенностей в карбоидных (полимерных) образованиях, несмотря на сложность последующих деструктивных превращений при коксовании. [c.27]


    В четырехатомном ион-радикале ВНз , достаточно сложный спектр которого, состоящий из 16 сигналов, показан на рис. П1.12, по константам СТВ при взаимодействии неспаренного электрона с ядром В(/= 2) и тремя протонами рассчитана спиновая плотность на атоме бора и водорода и установлена плоская структура радикала. [c.69]

    Величина константы СТВ, т. е. расстояние между линиями в мультиплетах, характеризует степень делокализации неспаренного электрона и зависит от спиновой плотности на ядрах. Спиновая плотность — это не то же, что плотность неспаренного электрона. Дело в том, что его орбиталь может поляризовать спины спаренных электронов на прилежащей ст-связи, т. е. каждый из них будет несколько больше относиться к одному из связанных атомов, чем к другому. Поэтому на каждом из ядер будет некоторая спиновая плотность, даже на том, на котором нет плотности неспаренного электрона. [c.62]

    Поскольку сверхтонкое взаимодействие связано с делокализацией электронов, то по экспериментальным значениям констант СТВ можно, как уже отмечалось, проводить количественную оценку электронной и спиновой плотности на разных атомах изучаемых радикалов и судить об их строении. [c.68]

    Каков же механизм спин-спинового взаимодействия через электроны химической связи Упрощенно его можно представить так. Электроны атомов водорода и дейтерия в молекуле стремятся сориентироваться таким образом, чтобы система спинов имела возможно меньшую энергию. Это будет в том случае, если векторы магнитных моментов электронов будут антипараллельны векторам магнитных моментов ближайших к ним ядер. Кроме того, оба электрона, образующие ковалентную связь, стремятся сориентировать свои спины, а следовательно, и векторы магнитных моментов, также антипараллельно. В результате этого два вектора магнитных моментов ядер в молекуле Н—О стремятся расположиться антипараллельно. Образно говоря, вследствие непрямого спин-спинового взаимодействия каждое из ядер знает , в каком спиновом состоянии находится другое магнитное ядро, причем передатчиком информации служат связующие электроны. Именно поэтому спиновая плотность электрона, обеспечивающего такую связь ядер, должна отличаться от нуля, что возможно только в случае электронов, имеющих -характер. [c.79]

    Рассмотрим в порядке возрастания числа атомов в парамагнитной частице с одним неспаренным электроном некоторые достаточно простые радикальные системы. Ряд интересных проблем возникает при использовании спектров ЭПР в исследованиях двухатомных радикалов типа АН и АВ, позволяющих проверить современные представления об их электронном строении. Определены компоненты тензоров --фактора и сверхтонкого взаимодействия гидроксильного радикала ОН и ион-радикала ЫН в разных средах, характеризующие распределение электронной и спиновой плотности. К так называемым л-радикалам типа АВ относят, например, N2 , Ог, N0, СЮ и др., а к ст-радикалам — Рг , СЬ , РС1 , ХеР, КгР и др. Из данных спектроскопии ЭПР по этим радикалам сделан, в частности, вывод об убывании относительной электроотрицательности атомов в ряду Кг>Р>Хе>С1. [c.68]

    Спектры ЭПР ароматических радикалов и ион-радикалов показывают, как уже видели на примере анион-радикала бензола (см. гл. П 1.3), что неспаренный электрон делокализован по углеродной циклической системе и одинаково взаимодействует со всеми протонами, спиновая плотность на которых отлична от нуля. В качестве еще одного примера можно привести анион-радикал я-бензо-, семихинона (четыре протона) [c.70]

    Если использовать значение константы СТВ для свободного атома водорода а=50,68-10 Т (эталонная 15-орбиталь), то можно по отношению к ней константы ан оценивать спиновую плотность на 15-орбиталях атомов водорода в таких комплексах, обозначаемую pH, т. е. существует прямая пропорциональность между спиновой плотностью и константой СТВ. Так, на транс-протоне винилового радикала относительная спиновая плотность 86/50,68= [c.71]

    Функции р (г) могут изображать различные типы микрораспределений в одном и том же объекте электронной и ядерной плотности, электрического потенциала, спиновой плотности, распределение градиентов внутренних электрических и магнитных полей. Знание указанных микрораспределений (атомной и магнитной структуры вещества) позволяет понять генезис и величину различных физико-химических свойств в простых и сложных конденсированных системах, зависимость свойств от температуры и других параметров, установить механизмы разнообразных процессов, протекающих в конденсированных системах, включая некоторые процессы, относящиеся к геологии, биохимические [c.8]

    В магнетиках картина рассеяния нейтронов представляет собой наложение независимых картин ядерного и магнитного рассеяний. Соответствующими экспериментальными приемами (воздействием на магнитную структуру магнитным полем и изменением температуры, использованием поляризованного пучка нейтронов) можно выделить вклад магнитного рассеяния. Магнитное рассеяние позволяет определить распределение спиновой плотности 3 (г) в веществе. [c.82]

    Изучение спектров электронного парамагнитного резонанса трифенилметильного радикала в толуоле выявило наличие повышенной спиновой плотности в орто- и параположениях бензольных колец и, соответственно, дефицит спиновой плотности в мета-положении  [c.259]

    Методом Хюккеля были рассчитаны спиновые плотности на атомах бензильного радикала, представляющие собой квадраты коэффициентов при % для молекулярной орбитали неспаренного электрона [c.265]


    Контактное (Ферми) взаимодействие состоит в переносе спиновой плотности неспаренных электронов парамагнитного иона на данное магнитное ядро по цепи химических связен. Поэтому контактное взаимодействие зависит прежде всего от электронного строения лигандов и характера связи металл — лиганд. Контактное взаимодействие прямо пропорционально константе сверхтонкого взаимодействия Л/ неспаренного электрона с магнитным ядром и обратно пропорционально абсолютной температуре Т. Константа /4 быстро затухает по цепи а-связей в сопряженных системах знак Л, в цепи альтернирует. Контактное взаимодействие более характерно для элементов IV периода, а у лантаноидов, как правило, оно играет второстепенную роль, особенно при их взаимодействии с протонами. [c.107]

    Когда известно значение контактного сдвига, его можно использовать для расчета спиновых плотностей на орбитали и на атоме магнитного ядра. [c.326]

    Ниже приведено несколько примеров рассчитанных спиновых плотностей в комплексах Ni- с ароматическими лигандами  [c.326]

    В результате электроны а-связи С — Н поляризуются, и на атоме водорода появляется спиновая плотность, знак которой противоположен знаку плотности неспаренного электрона на р,-орбита г1и углерода. Таким образом, причиной большей стабилизации структуры I по сравнению со структурой II является электронное обменное взаимодействие. [c.25]

    Спиновая плотность па атоме водорода связи С - Н. возникшая за сче того, что ни т -орби1али (2р находится плотность неспаренного электрона. гается выражением [c.26]

    Если спин направлен вдоль поля в низкоэнергетической и против поля в на атомах 1 и 3 по сравнению с атомом 2 должно наблюдаться увеличение спиновой плотности, направленной вдоль поля. В 1 /1 при спиновой плотности, направленной против поля, на атоме 2 должна быть большая величина отрицательной спиновой плотности, чем на атомах I и 3. Таким образом, мы не переводим каких-либо неспаренпых электронов на старую орбиталь ф , а только влияем на распределение неспаренных спинов на трех атомах, что приводит к отрицательной (противоположной приложенному полю) спиновой плотности на С . Эта отрицательная спиновая плотность затем спип-поляризуется под действием электронной пары связи С — Н [см. обсуждение уравнения (9.11)] так, что спиновая плотность оказывается на атоме водорода. Обменное взаимодействие неспаренного электрона, находящегося на (главным образом, на С и С ), с парой электронов, находящихся на ф,, снижает энергию v по сравнению с Два атома водорода, связанные с концевым атомом углерода, неэквивалентны по симметрии, но до сих пор мы не говорили ни о каких эффектах, которые могли бы сделать их неэквивалентными с точки зрения распределения спиновой плотности. Такая неэквивалентность выявится с введением обменной поляризации, затрагивающей заполненные молекулярные а-орбитали. [c.28]

    Возможно также, что в комплексе неспаренный электрон, находящийся на МО IV, спин-поляризует МО III (в которую некоторый вклад дает л-орбиталь лиганда) — заполненную МО, представляющую собой по существу Г -орбиталь металла. Электрон с тем же самым спином, что и на орбитали находится главным образом на металле, а электрон с противоположно направленным спином находится главным образом на части л -МО, которая в основном является МО лиганда. Неспаренный спин в результате этих двух косвенных взаимодействий делокализован в л-системе лиганда, но на г, - (в основном орбитали металла) и на ЛL-мoлeкyляpнoй орбитали (в основном орбитали лиганда) комплекса плотность неспаренного электрона отсутствует. Далее мы будем использовать термин спиновая плотность для обозначения неспаренного спина, обусловленного либо прямым, либо косвенным взаимо- [c.178]

    Основным доводом в пользу нахождения неспаренного спина в тг-си-стеме ароматического лиганда типа пиридина или фенильной группы является результат замещения атома водорода цикла на группу СН3. Если наблюдаемый сдвиг протона СН3 меняет знак по сравнению со знаком сдвига протона, находящегося в том же самом положении в кольце незамещенного соединения, то спиновая плотность находится в л-системе. Это происходит потому, что спиновая плотность в л-систе-ме — преимущественно углеродной системе—делокализована непосредственно на метильные протоны, т.е. связанные в этими протонами орбитали атомов водорода характеризуются небольшими коэффициентами в л-молекулярной орбитали. В незамещенном ароматическом соединении 1.5-орбиталь водорода ортогональна л-системе, и л-спиновая плотность должна поляризовать а-связь С — Н, чтобы повлиять на протоны. В результате знак спиновой плотности на Н противоположен знаку спиновой плотности в л-системе. [c.179]

    Расчет контактного сдвига аналогичен расчету методом МО изотропных констант СТВ ЭПР, обсуждавшемуся в гл. 9. В идеальном случае весь комплекс должен рассчитываться по неограниченному методу МО, а спиновые плотности на индивидуальных атомах должны быть определены и превращены в А, как это описано для а в гл. 9. Как уже говорилось выше, первоначально для интерпретации протонных контактных сдвигов целого ряда металлопенов использовался расши- [c.180]

    Особенности свойств аллильного и некоторых ароматических радикалов были исследованы с применением электронного парамагнитного резонанса [19]. С учетом конфигурационного взаимодействия спиновые плотности для разных орбит у них могут иметь отрицательные значения при обычных положительных. Вследствие этого неспаренный электрон аллильного радикала оказывает возмущающее действие на л-связи, что приводит к их распариванию (делокализации) по сильно сопряженной системе. Распределение спиновой плотности в этом радикале соответствует представлению о трех неспаренных электронах, что цридает аллильному радикалу высокую стабильность пр1 крекинге. [c.41]

    Каталитическую активность цеолитов oбъя няюf как результат увеличения бренстедовской кислотности групп ОН за счет частичного перераспределения электронной плотности, в частности, при введении многозарядных обменных катионов [142]. На основании анализа спектров сверхтонкой структуры ЭПР, полученных при адсорбции олефинов на образцах активированных РЗЭ-У цеолита, высказано предположение об образовании алкил-радикалов, связанных с поверхностью цеолита таким образом, что спиновая плотность на формально трехзарядном атоме углерода меньще единицы. [c.69]

    Радикалы, у которых неспаренный электрон локализован в основном на pz-орбитали или находится на я-орбитали, называются я-радикалами. К этому типу радикалов принадлежит большинство органических свободных радикалов. Мак-Коннел предложил дл органических я-радикалов соотношение a = Qp, связывающее величину расщепления а на атоме водорода с л-электронной спиновой плотностью р на соседнем атоме углерода. Константа Q для однотипных радикалов метяется не очень сильно. Для радикалов  [c.246]

    Спин-спиновую связь ядер рассматривают иногда как суммарный результат трех эффектов взаимодействия ядер и электронов. Во-первых, магнитный момент ядра оказывает воздействие на электрическое поле, обусловленное орбитальным движением электронов, а это поле, в свою очередь, взаимодействует с магнитным моментом другого ядра. Во-вторых, имеет место взаимодействие магнитных диполей, в котором участвуют не только ядра, но и электроны. И, наконец, учитывая симметрию атомных s-op-биталей, надо иметь в виду отличную от нуля электронную спиновую плотность на ядрах — так называемое контактное взаимодействие Ферми. При спин-спиновой связи протонов именно это взаимодействие является наиболее важным. [c.29]

    В радикале СНз протоны лежат в плоскости с атомом С в центре, а на перпендикулярной этой плоскости 2ргорбитали находится неспаренный электрон (я-радикал), т. е. его плотность в указанной плоскости равна нулю. Однако спиновая плотность на протонах не [c.69]

    ЭПР комплексов переходных металлов. Важность их изучения обусловлена использованием для идентификации соединений по специфической картине СТС, получаемой информацией о распределении электронной плотности, спиновой плотности на разных ядрах, о том, какие заняты -орбитали, т. е. о направлении ян-теллеров-ского возмущения и т. д. При этом следует, конечно, заметить, что интерпретация спектров указанных комплексов встречает немалые трудности. Дело в том, что переходные металлы могут иметь несколько приближенно вырожденных орбиталей и несколько неспаренных электронов. В свободном ионе 5 /-орбиталей вырождену, но в комплексе взаимодействие их с лигандами различно и происходит разделение на две или более групп орбиталей. Например, в октаэдрическом комплексе имеется трижды вырожденный нижний уровень и дважды вырожденный верхний (у других типов комплексов орбитали группируются по-другому). [c.72]

    Основное их применение — изучение систем со сложными и размытыми спектрами ЭПР, так как эффект ДЭЯР упрощает задачу интерпретации спектра, позволяя проводить идентификацию и измерение слабых взаимодействий, а также определять спиновую плотность на разных ядрах. [c.81]

    На рис. III.16 показаны спектры ЭПР и ДЭЯР замороженного раствора сэндвиче-вого комплекса титана с цик-лооктатетраеном и циклопен-тадиеном. Этот комплекс представляет собой -систему с осью симметрии Соо (свободное вращение колец), в спектре ЭПР которой сверхтонкая структура не разрешается. В эксперименте ДЭЯР устанавливается напряженность постоянного поля, соответствующая сигналу ЭПР для g 1 (помечена стрелкой), и ведется сканирование по области частот ПМР ( Н) при данной напряженности. Таким образом, получается спектр двойного электрон-протонного резонанса ( Н ДЭЯР) с хорошо разрешенной структурой. На рис. II 1.16, где представлен этот спектр, хорошо видны два широких дублета, из которых непосредственно определяется значение параллельной компоненты константы СТВ а л для взаимодействия делокализо-ванного неспаренного электрона с протонами циклов gHg и С5Н5 (центральная группа линий обусловлена протонами растворителя— толуола). Если провести такой же эксперимент с установкой сигнала ЭПР, соответствующего g x, то получим перпендикулярные компоненты взаимодействия и определим значение а , после чего можно оценить спиновую плотность на ядрах. [c.81]

    Расчет спиновых плотностей на основе и.зотропного сдвига и получение сведений о механизме делокализации электронов возможны при исследовании парамагнитных комплексов. В этом случае наиболее информативны исследования по ядрам, непосредственно связанным с парамагнитными ионами ( Ю, и др.). Однако достаточно плодотворны также исследования ПМР. [c.325]

    Исследование протонного резонанса в комплексах Мп +, Со2+, Сг", Fe , Ni ", u + позволило определить спиновые плотности па протонах в акваионах и комплексах с ароматическими лигандами. [c.326]


Смотреть страницы где упоминается термин Спиновая плотность: [c.23]    [c.24]    [c.26]    [c.29]    [c.42]    [c.55]    [c.55]    [c.177]    [c.178]    [c.13]    [c.225]    [c.266]    [c.79]    [c.298]   
Смотреть главы в:

Квантовая органическая химия -> Спиновая плотность

Стабильные радикалы электронное строение, реакционная способность и применение -> Спиновая плотность


Химический энциклопедический словарь (1983) -- [ c.700 ]

Квантовая химия (1985) -- [ c.375 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.700 ]

Основы квантовой химии (1979) -- [ c.371 , c.372 ]

Теория и практические приложения метода ЭПР (1975) -- [ c.123 , c.124 ]

Физические методы в неорганической химии (1967) -- [ c.324 , c.379 ]

ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.47 , c.162 , c.163 , c.173 ]

Квантовая механика молекул (1972) -- [ c.106 , c.116 , c.136 , c.141 ]

Электроны в химических реакциях (1985) -- [ c.96 ]

Строение материи и химическая связь (1974) -- [ c.267 ]

Секторы ЭПР и строение неорганических радикалов (1970) -- [ c.31 , c.231 , c.232 , c.284 ]

Ионы и ионные пары в органических реакциях (1975) -- [ c.0 ]

Химия Справочник (2000) -- [ c.478 ]




ПОИСК







© 2025 chem21.info Реклама на сайте