Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Облучение полимеров

    Влияние подвижности места расположения радикала на скорость рекомбинации явно следует из зависимости спада числа радикалов от давления, например в ПЭ, ПП, ПА-6, ПА-66, ПА-12 и поли (2,6-диметил-1,4-фенилен оксиде) [44—46], и температуры [41—43, 47—49]. На кривых спада числа свободных радикалов в (облученных) полимерах в зависимости от роста температуры выявляется несколько областей типа плато, каждое из которых соответствует захвату радикалов на определенном морфологическом участке. Переход от одного плато к следующему указывает на то, что онределенный тип захваченных свободных радикалов стал достаточно подвижным для рекомбинации (химически одинаковые радикалы в кристаллических и аморфных областях могут различаться по стериче-ской конфигурации, которая также влияет на скорость рекомбинации [37, 42, 47]). Следовательно, переходы связаны [c.222]


    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Из данных рис. 7.18 следует, что, например, для ПС различие значений необлученного и облученного образцов при комнатной температуре (20° С) составляет 2,5 десятичных порядка. При повышении температуры до 373 К это различие резко уменьшается (до 0,2 порядка). Под влиянием ионизирующего облучения полимеров чаще всего происходит изменение их строения, что сказывается и на характере ибо при этом меняется подвижность, а иногда и концентрация носителей. [c.203]

    Прежде всего было установлено, что во время низкотемпературного радиолиза органических веществ (независимо от их молекулярной массы) в них, так же как и в неорганических веществах, происходит стабилизация положительных и отрицательных зарядов (ионов, дырок и электронов). Об этом свидетельствует изменение краски облученных образцов, их термолюминесценция при разогреве, фотолюминесценция при низких температурах, уменьшение окраски и РТЛ под действием света, изменение электрической проводимости, а также результаты анализа спектров электронного парамагнитного резонанса (ЭПР) облученных полимеров и низкомолекулярных органических веществ [9.7]. [c.236]

    Процесс рекомбинации зарядов, приводящий к РТЛ облученного полимера или другого органического вещества, можно схематически изобразить следующим образом  [c.236]

    Освещение облученного полимера монохроматическим или обычным светом (оптическое отбеливание ) приводит к изменению спектров возбуждения фотолюминесценции до некоторого предельного уровня. Так, длительное отбеливание облученного при 77 К полиэтилена светом с длиной волны 612 нм снижает интенсивность РТЛ на 25—30%, а при длине 405 нм она уменьшается в 3—4 раза. Форма кривой высвечивания при этом существенно не изменяется, однако отбеливание уменьшает высоту всех максимумов РТЛ. После оптического отбеливания облученного образца полимера светом с длиной волны Яо фотолюминесценция перестает возбуждаться светом с длиной волны ХЖо. [c.237]


    Эти факты свидетельствуют о наличии в облученном полимере ловушек разной глубины, т. е. для высвобождения связанных зарядов необходимы разные энергии активации. В случае существования ловушек одного и того же типа отбеливание приводило бы к постепенному снижению числа связанных зарядов, а форма спектра возбуждения оставалась бы неизменной. [c.237]

    На первой стадии облучения полимера заряды захватываются ловушками для высвобождения, из которых требуется энергия от [c.237]

    В процессе облучения полимеров при ионизации макромолекул появляются вторичные электроны, захват которых обусловлен йх попаданием в потенциальные ямы силового поля межцепных взаимодействий. Другими подобными ловушками для электронов могут быть имеющие к ним положительное сродство макрорадикалы и функциональные группы. [c.238]

    Наибольшая интенсивность свечения для полимеров приходится на видимую часть спектра (Я = 450 550 нм) в широком интервале температур (от 77 до 350 КЬ Интенсивное излучение имеется и в ультрафиолетовой области спектра. Совпадение максимумов на кривой высвечивания облученного полимера с областями размораживания его молекулярной подвижности и со структурными переходами указывает на то, что рекомбинация зарядов при разогреве полимерного образца определяется не термическим высвобождением их из ловушек, а самой молекулярной подвижностью. Оценка оптическими методами глубины электронных ловушек в облученных полимерах показывает, что термическое высвобождение электронов из таких ловушек, какими являются для них связанные радикалы, может начаться лишь при очень высоких температурах 7 >500 К. [c.238]

    Так как органические полимеры являются менее жесткими по сравнению с неорганическими кристаллами или стеклами, для них существенными могут оказаться процессы миграции зарядов. Они состоят в том, что при разогреве облученного полимера часть глубоких ловушек разрушается или начинает мигрировать в его объеме еще до того, когда из них освобождаются захваченные электроны. Миграция ловушек и их разрушение сопровождаются рекомбинацией связанных зарядов в отличие от рекомбинации электрона с дыркой . Миграции ловушек со стабилизированным зарядом становятся все более вероятными по мере размораживания подвижности отдельных звеньев, сегментов и макромолекул как целого. Таким образом, скорость высвечивания образца полимера при некоторой фиксированной температуре будет определяться временем релаксации определенной группы атомов макромолекул. Так как спектр фотолюминесценции полимера, облученного при 77 К, практически не меняется во время его нагревания вплоть до размягчения (или плавления), можно сделать вывод, что его РТЛ происходит за счет рекомбинации зарядов, захваченных в [c.238]

    Исследования, проведенные методами ЭПР и РТЛ, показали, что рекомбинация зарядов в данном случае определяется не гибелью свободных радикалов, а окислением первичных алкильных радикалов растворенным в веществе кислородом, поэтому этот максимум принято называть кислородным . Если перед облучением полимера удалить растворенный в нем кислород путем откачки до давления 10 —ю-2 Па то интенсивность РТЛ в области кислородного максимума резко снижается. [c.239]

    Описание кинетики любого физико-химического процесса, приводящего к резкому изменению характера температурной зависимости изучаемой величины, может быть проведено с использованием уравнений реакций первого или второго порядка. Исходя из того, что распределение образующихся в облученном полимере ионов неравномерно, можно считать, что процесс излучательной рекомбинации подчиняется не бимолекулярному уравнению (как это имеет место при однородном распределении ионов), а мономо-лекулярному уравнению реакции. Если ионы в облученном полимере распределены равномерно, то скорость изменения концентрации N связанных зарядов одного знака при рекомбинации, согласно теории бимолекулярной кинетики, [c.239]

    Все это свидетельствует о том, что РТЛ облученных полимеров в первую очередь определяется процессами молекулярного движения. В процессе изучения РТЛ полимеров, удается не только [c.242]

    При облучении полимеров и замороженных растворов при низких температурах ( азота) в них накапливаются свободные радикалы. Наблюдается явление насыщения, когда (К-1 достигает постоянного значения, которое не меняется при дальнейшем облучении, но зависит от условий опыта. Объясняется это тем, что под действием излучения радикалы интенсивно возникают и гибнут, динамика обоих процессов зависит, в частности, от интенсивности облучения. [c.295]

    При прохождении тяжелых ядер, разогнанных до больших значений энергии, в объеме любых непроводящих материалов образуются треки (в металлах и полупроводниках они не образуются). В частности, в полимерах по пути прохождения частиц разрываются полимерные цепи и появляются активные химические группы. Не обнаруживаемые даже электронной микроскопией деструктивные изменения можно усилить ультрафиолетовым облучением пленки. Различия в химической активности полимера на поверхности и по траектории частиц проявляются при травлении пленки. В зависимости от используемого полимера под воздействием щелочи или окислителя в пленке образуются каналы цилиндрической формы. Для облучения полимера используют тяжелые осколки, образующиеся при делении Наиболее совершенная технология получения ядерных фильтров разработана Г. Н. Флеровым с сотр., предложившими облучать пленки ускоренными на циклотроне ионами ксенона. Так как все ионы Хе в циклотронном пучке обладают одинаковой энергией, то все поры, образующиеся после травления щелочью или окислителем, должны обладать одинаковыми размерами. В промышленном масштабе выпускаются поликарбонатные или лавсановые ядерные фильтры с размерами пор от 0,05 до [c.25]


    Для получения привитых сополимеров широкое распространение получил метод облучения полимера -лучами в присутствии жидких или газообразных мономеров в инертной среде. Привитая сополимеризация инициируется радикалами, образующимися в полимерных цепях. Этот метод широко используется для химической модификации поверхностей волокон и пленок, например, для -повышения гидрофильности полиолефинов и полиамидов путем прививки водорастворимых полимеров (полиэтиленоксида, полиакриловой кислоты, поливинилпирролидона). [c.65]

    Облучение полимеров частицами высокой энергии (порядка 0,1 МДж/кг и выше) вызывает сшивание цепей макромолекул, вследствие чего полимер упрочняется, приобретает высокую устойчивость к образованию трещин, расширяется температурная область его применения. Например, пленка из облученного полиэтилена выдерживает кратковременное нагревание до 250°С и длительное воздействие температуры при 125°С, что полностью исключено для необлученного полиэтилена. Устойчивость к облучению у полимеров не одинаковая. Одним из наиболее устойчивых к облучению синтетических полимеров является полистирол. В его макромолекулах имеется бензольное кольцо (—СНа—СН—) , требующее большей дозы облучения, чтобы [c.338]

    Реакции, протекающие при облучении полимера, его нагревании или механическом воздействии, часто только условно могут быть названы деструкцией. В действительности — это сложный процесс, в котором разрыв связей (собственно деструкция) сопровождается возникновением новых связей и изменением структуры полимера. [c.283]

    Фотохимическая деструкция. Такие процессы деструкции полимеров имеют очень большое практическое значение, так как при эксплуатации полимеры почти всегда подвергаются действию света. Реакции, протекающие при облучении полимеров, играют большую роль в процессах старения полимеров и часто определяют срок службы природных и синтетических волокон, изделий из резины и пластических масс, лакокрасочных покрытий. [c.290]

    Облучение полимеров сопровождается образованием двойных связей. Деструкция и образование пространственных структур при облучении полимеров всегда протекают одновременно, но соотношение скоростей этих двух процессов настолько меняется в зависимости от химического строения полимеров, что одни полимеры полностью деструктируются под влиянием ионизирующих излучений, а в других преобладают процессы сшивания макромолекул. [c.294]

    Кислород воздуха влияет на процессы, протекающие при облучении полимеров, что часто приводит к окислительной деструкции. Полимеры, легко образующие в отсутствие кислорода пространственные структуры, в присутствии кислорода деструктируются с выделением большого количества летучих веществ. [c.295]

    В тех случаях, когда при облучении полимера образуются газообразные продукты, осуществление процесса при повышенной температуре ведет к образованию пенообразного материала. ЗИч) явление лежит в основе радиационно-химических методов получения разнообразных материалов, находящих применение во многих отраслях промышленности. [c.211]

    Предварительное облучение полипропилена 1015 рад и дальнейшее облучение полимера в присутствии мономера Винилпирролидон Сорбция мономера в облученный полипропилен Улучшение окрашиваемо-сти изделий, преимущественно волокон [179] [c.150]

    При облучении полимера в нем протекают реакции деструкции и сшибания. Растворимость и диффузия газов, а также проницаемость облученного полимера зависят в основном от соотношения процессов сшивания и деструкции Полимеры, которые [c.233]

    После облучения пленки из поликарбоната УФ-све-том на воздухе наблюдалось образование геля, и хотя его количество увеличивалось при облучении полимера в вакууме, оно не превышало примерно 2% даже после поглощения высоких доз. В обоих случаях вязкость поликарбоната непрерывно уменьшалась с увеличением дозы [8]. [c.183]

    После облучения полимера наблюдались небольшие изменения в его ИК-спектрах [31]. Кроме изменений в абсорбции ОН-групп, которая более отчетливо выражается при облучении на воздухе, чем в вакууме, наблюдаются изменения в абсорбции карбонильных групп, хотя они прослеживаются с трудом из-за сильной абсорбции карбонатных групп в этой области. Газ, выделившийся во время облучения поликарбоната, состоит, в основном, из окиси и двуокиси углерода и следов водорода и метана. [c.186]

    Особен по интепсивио отщепляются атомы хлора от полимера при действии на него --излучения, одновремешю резко снижается механическая прочность образцов. Это явление можно объяснить лиш[1 разрушением цепей полимера, сопровождающимся отщеплением хлора. После 22-дневного облучения полимер превращается и темную- жидкость. [c.261]

    Действие солнечного света не только ускоряет процесс отщепления хлористого водорода, но и последующее окисление полимера. При облучении поливинилхлорида светом кварцевой лампы в течение первых 2 часов наблюдается заметное преобладание процесса окислительной деструкции над процессом сшивания цепей, полимер становится более пластичным, вязкость его раствора снижается. При более длительном облучении начинает преобладать процесс образования поперечных связей, возможно, с участием кислородных атомов. После 12—20 час. облучения полимер полностью утрачивает иластичиость и растворимость. [c.269]

    Исключительно интересным и своеобразным является метод получения привитых сополимеров путем у-облучения полимера в присутствии какого-либо мономера или внесением предварительно облученного полимера в мономер, выбранный для прививки к данному полимеру. Под влиянием - --облучения происходит частичная деструкция макромолекул, преимущественно с отщеплением от отдельных звеньев цепи атомов водорода или замещающих его атомов. В результате этого процесса макромолекулы превращаются в полимакрорадикалы, которые могут рекомбинировать между собой или инициировать полимеризацию другого мономера. [c.551]

    При постепенном размораживании облученных полимеров вследствие повышения молекулярной подвижности электроны покидают потенциальные ямы, после чего происходит их рекомбинация с ионами. Переход в основное состояние таких электронно-возбужденных макромолекул в достаточно Ш)ироком интервале температур сопровождается довольно интенсивным свечением. [c.238]

    При облучении полимеров и замороженных растворов при низких температурах (/к п азота) в них накапливаются свободные радикалы. Наблюдается явление насыщения, когда [Р-] достигает стационарного значения, когорое не меняется при дальнейшем облучении. Объясняется это тем, что иод действием излучения радикалы ингенсивно возникают и гибнут, при длительном облучении устанавливается стационарная концентрация. [c.246]

    Наличие свободных радикалов в полимерах при их радиолизе оценивается методом электронного парамагнитного резонанса (ЭПР), причем лучше, если облучение полимера проводить ниже его температуры стеклования. Здесь время жизни свободных радикалов удлиняется вследствие малой подвижности структурных элементов полимера. Например, спектр ЭПР полиизопрена, облученного в стеклообразном состоянии, представляет собой слабо разрешенный сннглет с расщеплением (рис. 16.2). Эго соответст- [c.246]

    Образование химических поперечных связей в облученных полимерах интеисивно развивается после перехода полимера из стеклообразного состояния, в котором он подвергался облучению, в высокоэластическое (рис. 16.3). Это объясняется проявлением подвижности сегментов макромолекул в высокоэластическом и [c.247]

    Перекисные группы образуются в результате облучения полимера в присутствии кислорода или путем линейной сополимеризации двух мономеров, один из которых представляет собой перекись (например, гидроперекись изонропила, грег-бутила, моноперекись малеиновой кислоты НООС—СН=СН—СОООН, перакриловая кислота СН2=СН—СОООН и т. д.), а также при взаимодействии полимерных хлорангидридов кислот с гидроперекисью трет-бутилг [c.208]

    Доза облучения, вызывающая структурное изменение полимера, также зависит от его химического строения. Содержащиеся в макромолекуле полимера двойные связи или бeнзoльгiыe кольца оказывают защитное действие при облучении. Для сшивания таких полимеров, как каучуки и полистирол, требуется большая доза облучения, чем для сшивания парафиновых углеводородов. Защитное действие при облучении полимеров оказывает также добавка производных нафталина. Обычные дозы облучения полимеров составляют 258—25 800 Кл/кг (1 —100 МР). [c.295]

    Образование поперечных связей в облученных полимерах особенно интенсивно развивается после перехода полимера из стеклообразного состояния, в котором он подвергался облучению, в высокоэластическос. Это объясняется подвижностью макромолекул в высокоэластическом сосгоинии, в результате чего они могут приближаться друг к другу на расстоя1 Ня, рав-Е(ые длине химических связей между атомами углерода соседних макромолекул. [c.215]

    Изучение влияния физического состояния на процессы радиационного химического разрушения полимеров показало 4 что при облучении полимеров (поливинилхлорид, полиметилметакрилат и др.) в высокоэластическом состоянии газы успевают выделиться из образцов полимеров, не нарушая их ц осгности. В то же время при облучении полимеров в стеклообразном состоянии образующиеся газы вследствие малых значений коэффициентов проницаемости не успевают выделиться из полимера и разрушают образец. [c.125]

    Традиционные методы ЭПР для изучения молекулярных движений в полимерах основаны на исследовании температурных изменений ширины линии и формы сигнала, возникающего при низкотемпературном разрушении (или облучении) полимера. Для изучения молекулярной динамики, релаксационных процессов и морфо]югии полимеров используются различные методики электронного парамагнитного резонанса [44]. [c.291]

    Практически все полимеры и материалы в процессе эксплуатации подвержены действию света - фотодеструкции. Ино] да кванты света, поглощенные полимером, вызывают разрыв химических связей в макромолекулах с образованием свободных радикалов. Фотол.еструкции подвержены полимеры, содержащие группировки, способные поглощать свет с короткой (менее 400 нм) длиной волны так, политрифторхлорэтилен имеет в 40...45 раз меньшую стойкость, чем политетрафторэтилен. При действии на полимеры световой радиации может происходить не только деструкция, но и структурирование с возрастанием молекулярной массы облученного полимера. Если подействовать на полиизопрен ультрафиолетовым светом, то возможно протекание химических реакций с отрывом атома водорода и образованием свободных радикалов [c.112]

    I —FR-S1500 2 — Stereon 750 0 D— отношение дозы ионизирующего излучения до точки гелеобразования к экспериментальной Дозе — массовая доля золя в облученном полимере. [c.226]

    Чувствительность, следовательно, определяется как доза излучения, вызывающая полное растворение резиста при данных условиях проявления. Как правило, эта доза не равна наиболее низкому значению, при котором можно растворить весь облученный полимер. В случае использования термодинамически лучшего растворителя [77] облучение может быть проведено меньшей дозой, но при этом возрастает также растворимость необлученного полимера, что часто является причиной технологического брака. Пельц-бауер и Вагнер предложили [78] с целью исключения различий в чувствительности резистов, обусловленных разной толщиной и разной длительностью проявления, использовать стандартные толщину слоя 1 мкм и время проявления 1 мин. [c.240]


Смотреть страницы где упоминается термин Облучение полимеров: [c.536]    [c.237]    [c.238]    [c.246]    [c.291]    [c.191]    [c.215]    [c.191]    [c.234]   
Смотреть главы в:

Введение в радиационную химию -> Облучение полимеров


Кристаллические полиолефины Том 2 (1970) -- [ c.386 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.277 , c.278 ]




ПОИСК





Смотрите так же термины и статьи:

облучение



© 2025 chem21.info Реклама на сайте