Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена, получение и применение

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]


    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]

    Из известных способов получения высших алюминийалкилов промышленное применение пока что нашли способы, основанные на взаимодействии триэтилалюминия с этиленом и триизобутилалюминия с соответствующим высшим а-олефином, например ок-теном [51, с. 12 52]. Однако необходимо остановиться и на других способах, которые в будущем могут иметь промышленное применение, К таким, а первую очередь, следует отнести процессы получения индивидуальных алюминийалкилов прямым синтезом из алюминия, водорода и высшего олефина, а также одностадийный синтез высших алюминийалкилов из алюминия, водорода и этилена. [c.163]

    На заводах синтетического этилового спирта, работающих сернокислотным способом, возможно использование этилена в виде этан-этиленовой фракции с относительно широким интервалом концентрации этилена (35—95%). После извлечения этилена серной кислотой этан возвращается на пиролиз. В этом случае применяется одна колонна с небольшим числом тарелок для отгонки этан-этиленовой фракции, а кубовый продукт, содержащий этан, пропан, пропилен и высшие, возвращается на пиролиз. При получении синтетического этилового спирта. методом прямой гидратации требуется применение фракции Сг с содержанием этилена 1не менее 95%об. В ряде других производств (алкилирова-ние бензола с целью получения этилбензола, прямое окисление в окись этилена, получение хлорпроизводных) достаточно иметь газ с 90—95% содержанием этилена. На полимеразицию под высоким давлением и другими методами направляется этилен с концентрацией 99,9%. Применение высококонцептрированного этилена, выделение которого требует значительных затрат, в ряде случаев выгодно с технологической точки зрения, т. к. облегчается освобождение от других примесей, являющихся ядами катализаторов, отпадает необходимость ректификации при рециркуляции непрореагировавшего этилена. [c.68]


    Циклические кетоны. При облучении циклических кетонов ультрафиолетовым излучением образуются окись углерода и некоторые углеводороды [ИЗ—115]. Так, циклогексанон дает окись углерода и пентаметиленовый бирадикал, который в основном хотя и изомеризуется до циклопентана и пентена-1, однако распадается также с образованием небольших количеств этилена и пропилена 115]. Циклопентанон дает окись углерода, этилен и циклобутан. Выход циклобутана составляет 38%. При учете трудностей, возникающих при получении циклобутана другими методами, эта реакция может найти применение как метод синтеза циклобутана [116]. [c.256]

    Продукты эти большей частью вырабатываются в значительных количествах (отсюда и название — тяжелый органический синтез), и для их получения используются чаще всего непрерывные процессы с применением катализаторов нередко реакции протекают при высокой температуре, а иногда и при высоком давлении. В качестве сырья в основном органическом синтезе используют простые по строению веп .ества, преимущественно газы. Это углеводороды жирного ряда парафины (метан и его гомологи), олефины (этилен, пропилен, бутилены) и ацетилен, а также окислы углерода (окись и двуокись), водород, водяной пар. В меньших количествах применяются также ароматические углеводороды и их производные. Все эти вещества получают переработкой нефти, ископаемых углей, природного газа они содержатся в природном и попутном нефтяном га.зе (парафины), газах нефтепереработки (парафины и олефины) и в коксовом газе (этилен, пропилен, метан, водород). Двуокись углерода обычно выделяют из различных газов — отходов других производств. [c.254]

    Еще один недостаток процессов получения ацетилена из углеводородов является общим для очень многих нефтехимических процессов и в известной степени для процессов нефтепереработки. Ацетилен — не единственный продукт, получаемый этим способом, как это имеет место в случае карбидного ацетилена (если не считать пушонку). Целевыми продуктами многих процессов являются смеси ацетилена и этилена. Во всех процессах получается избыток водорода, иногда чистого, иногда в смеси с СО. Эти продукты также не транспортабельны, и если стремиться наиболее выгодно их использовать, они должны найти применение на месте не в качестве горючего, а для химического синтеза. Этилен имеет пшрокое применение. Водород необходим для синтеза аммиака особенно там, где имеется азот, являющийся побочным продуктом выделения из воздуха кислорода, который используется в процессах окислительного пиролиза. Окись углерода можно использовать для получения дополнительных количеств водорода из водяного газа, для синтеза метанола нли других целей. Следовательно, такие пути использования побочных продуктов более выгодны, чем их применение в качестве горючего на том же заводе, и они являются важным фактором повышения экономичности заводов по производству ацетилена на основе углеводородов. Стоимость производимого ацетилена не может быть адекватно определена без учета этих факторов. Еще несколько лет назад структура цен на возможное сырье исключала все виды сырья, кроме сырой нефти и мазута, который не очень привлекателен с технической точки зрения, а также природного газа. Заводы по производству ацетилена из углеводородов, пущенные в 50-х годах, в основном были основаны на использовании природного газа и располагались в районах, где природный газ имелся и был, по возможности, дешевым, [c.435]

    Значительный вклад в промышленное получение окиси этилена сделали Лоу и сотрудники [102]. Они отметили, что добавление органических галоидных соединений увеличивало выходы окиси этилена. Как уже было сказано выше, серебряный катализатор во время работы постепенно теряет свою активность. Добавление к смеси воздух — этилен небольших количеств дихлорэтана повышает выход и степепь превращения окиси этилена. На рис. 5 приведены данные Мак-Би, Хасса и Уайзмена [124] о влиянии различных количеств дихлорэтана на степень превращения этилена в окись этилена. Из рис. 5 видно, что добавление больших количеств дихлорэтилена дезактивирует катализатор. Катализатор, дезактивированный ди-хлорэтилепом, можно довольно легко регенерировать путем повышения температуры и пропускания этилена над катализатором. Имеется много работ [13, 37], главным образом патентных, по применению добавок других галоидных соединений к смеиН этилен — воздух. Вопрос о влиянии этих добавок на каталитические свойства здесь не будет детально рассматриваться. [c.261]

    В литературе имеются сообщения о новых путях получения полиэтилена при низком давлении, исключающих применение металлоорганических соединений [158]. Катализатором полимеризации в этом случае служит окись хрома, нанесенная на носитель, состоящий из Si02 и АЬОз. Оптимальные условия полимеризации этилена в среде растворителя (пентан, октан) температура 135—190 и давление 35 а/иж в этих условиях этилен полностью превращается в полиэтилен, который имеет средний мол. в. 5000—30 ООО, среднюю плотность 0,952, т. пл. 113—127° и характеризуется высокой механической прочностью и морозоустойчивостью. (Метод Филипнса). [c.180]


    В эти же годы большие усилия ученых и инженеров были направлены на разработку технически совершенных и экономичных методов производства чистых азота и водорода для синтеза аммиака [14—22]. Первые аммиачные заводы работали па азото-водородной смеси, получаемой из полуводяного газа методом конверсии окиси углерода с водяным паром, т. е. фактически сырьем были кокс и каменный уголь. Вскоре после первой мировой войны были разработаны промышленные методы производства водорода из коксового газа глубоким охлаждением его до температуры —200° С. При этом конденсируются все газообразные компоненты коксового газа — этилен, этан, метан, окись углерода, а остающийся нескондепсированным водород промывается жидким азотом для освобождения от следов окиси углерода. Были созданы совершенные электролизеры с униполярными электродами, а также высокопроизводительные электролизеры фильтр-прессного типа с биполярными электродами для электролиза воды, которые нашли широкое применение в Норвегии, Италии и Японии. В небольшом масштабе стал применяться железопаровой способ получения водорода, использовался побочный водород других производств, например производства хлора электролизом раствора поваренной соли. Наконец, был разработан метод производства водорода конверсией метана и углеводородов нефти с водяным паром при атмосферном давлении и под давлением 2—5,1 МПа. Последний метод оказался наиболее экономичным, получил большое распространение после второй мировой войны и начал постепенно вытеснять другие. [c.13]


Смотреть страницы где упоминается термин Окись этилена, получение и применение: [c.194]   
Технология нефтехимических производств (1968) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Окись этилена, применение для получения водорастворимых неионогенных веществ

Этилен окись

Этилен получение

Этилен применение



© 2025 chem21.info Реклама на сайте