Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород побочный продукт

    В одном из производств ацетилена электрокрекингом природного газа крекинг-газ после реакторов должен подвергаться очистке от побочных продуктов, и в первую очередь от сажи и цианистого водорода. [c.184]

    Несомненно, процесс дегидрирования метанола мог оказаться более выгодным по сравнению с процессам окисления, так как лрн дегидрировании спирта можно было бы получать в качестве побочного продукта водород, а ие воду, как это имеет место при окислении. Поэтому определение констант равновесия реакции (VII) представляет практический интерес. [c.372]


Рис. 14.5. Рециркуляция газообразного водорода - побочного продукта фиксации азота. Нитрогеназа катализирует образование водорода, используя энергию гидролиза АТР, а гидрогеназа катализирует его утилизацию. Рис. 14.5. Рециркуляция <a href="/info/136250">газообразного водорода</a> - побочного <a href="/info/628780">продукта фиксации азота</a>. Нитрогеназа <a href="/info/614396">катализирует образование</a> водорода, <a href="/info/1435378">используя энергию гидролиза</a> АТР, а гидрогеназа катализирует его утилизацию.
    Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]

    Водород широко распространен в природе. Он входит в состав воды, некоторых горных пород, ископаемого топлива, всех растительных и животных организмов. Содержание водорода в земной коре (литосфере и гидросфере) составляет около 1 % мае., в атмосфере в свободном состоянии водород присутствует в ничтожных количествах (10" % об.). Основными промышленными источниками водорода являются вода, природные углеводородные газы, обратный коксовый газ, генераторные газы. Помимо этого, водород — побочный продукт ряда производств синтеза ацетилена, электролитического получения щелочей. [c.204]

    При взаимодействии н-амилового спирта с хлористым водородом и хлористым цинком в качестве побочного продукта образуется до 10% 2- и 3-хлорпентанов. Взаимодействием же с хлористым тионилом в пиридине получают чистый хлористый н-амил [114]. [c.193]

    Оба акта хемосорбции сопровождаются выделением большого количества энергии за счет образования хлористого водорода — побочного продукта реакций конденсации, которые протекают и в акте (А) и в акте (Б). Таким образом, в процессе химической сборки потенциальные барьеры преодолеваются сходу, они, практически, не заметны, в то время как для фазового превращения, и пиролитического синтеза характер- [c.214]


    На 1 кг исходного пропилена получается 0,73 кг акрилонитрила, 0,11 кг ацетонитрила и 0,13 кг H N. Дальнейшие исследования катализатора и усовершенствование процесса могут привести к повышению выхода акрилонитрила до 1,01 кг на 1 кг пропилена. Регенерация части цианистого водорода, являющегося побочным продуктом, может повысить выход. [c.121]

    Побочными продуктами гидроочистки являются также углеводородные газы из стабилизационной колонны и сепаратора низкого дав-,, ления (табл. 10), сероводород и отдуваемый водородсодержащий газ. Для приближенных расчетов можно воспользоваться ориентировочными данными по выходу углеводородных газов в процессе гидроочистки с учетом концентрации водорода в свежем водородсодержащем газе (рис. 4). [c.35]

    Наличие достаточных ресурсов дешевого водорода — побочного продукта каталитического риформинга — явилось важной экономической предпосылкой для производства нефтехимического нафталина, отсутствовавшей прежде. [c.170]

    Большинство моноциклических ароматических углеводородов выделяют из нефти с помощью хорошо известных методов разделения — экстрагирования, фракционирования, кристаллизации в сырье содержится сравнительно много целевых соединений. Аналогичные методы было предложено использовать и для производства нафталина, но до сих нор этот путь еще не нашел широкого промышленного применения. Усовершенствование технологии, открывшее возможности быстрого роста производства моноциклических ароматических углеводородов из нефти, сыграло важную роль и в разработке процессов производства нефтехимического нафталина. Установки каталитического риформинга, на которых получают моноциклические ароматические углеводороды, являются также источником большого количества сравнительно дешевого водорода — побочного продукта, необходимого для получения нафталина гидродеалкилированием алкилнафталинов, содержащихся в нефтезаводских фракциях. При правильном выборе сырья и условий процесса на установках каталитического риформинга можно получать также более тяжелый продукт, из которого удается выделить фракцию с высоким содержанием бициклических ароматических углеводородов. На установках каталитического и термического крекинга также образуются фракции, в которых могут содержаться большие количества нафталиновых углеводородов. [c.199]

    Полимер осаждают метанолом и сушат. Для регенерации пиридина кислые промывные воды обрабатывают щелочью. Пиридин является не только растворителем, но и акцептором хлористого водорода (побочного продукта реакции), и, возможно, катализатором реакции. Часть дорогостоящего пиридина может быть заменена другим растворителем, например метиленхлоридом, хлорбензолом, хлороформом, тетрахлор-этаном и т. д. Преимуществом метода фосгенирования является невысокая температура реакции и возможность контроля молекулярного веса полимера (обрыв цепи осуществляют добавкой одноатомного фенола). Смолы, получаемые этим способом, обычно имеют молекулярный вес - 70 ООО. Повышение молекулярного веса достигается дополнительным энергичным перемешиванием раствора полимера в метилен-хлориде или добавлением катализатора. Себестоимость производства 1 т поликарбонатов по этому методу снизилась с 3300 долл. в 1960 г. до 1300—1900 долл. в 1965 г. [c.251]

    А теперь представим себе электролизер, разделенный на две части перегородкой, способной пропускать ионы только одного знака, например катионы такой перегородкой могут быть катионитовые мембраны. Электроды же представляют собой полые пористые угольные блоки. Когда анодное пространство залито раствором поваренной соли, а катодное — раствором едкого натра, то при электролизе ионы натрия за счет переноса тока начинают переходить через мембрану в катодное пространство и там накапливается щелочь. На катоде выделяется водород (побочный продукт, удаляемый из цикла), а на аноде — хлор (товарный продукт). Такой цикл принят на всех заводах, производящих хлор н щелочь. [c.130]

    Таким образом, образование элементарного трития зависит от природы анализируемого соединения и в значительной степени определяется количеством и природой продуктов, оставшихся в реагенте от предыдущих анализов. Этот эффект связан, по-видимому, со сложностью и разнообразием реакций обмена, в которых участвуют алюмогидрид лития, элементарный водород и атомы водорода побочных продуктов реакции. Прежде чем анализировать неизвестное соединение, необходимо провести калибровку, используя для этого известное соединение, как можно более близкое по химическим свойствам к анализируемому соединению. Как видно из результатов анализа н-бутанола и полиэтиленадипината, при анализах полимерных материалов могут встретиться некоторые трудности. [c.253]


    Хлористый водород (побочный продукт) [c.506]

    Неон получают совместно с гелием в качестве побочного продукта в процессе сжижения и разделения воздуха. Разделение гелия и неона осуществляется за счет адсорбции или конденсации. Адсорбционный метод основан на способности неона в отличие от гелия адсорбироваться активированным углем, охлаждаемым жидким азотом. Конденсационный способ основан на вымораживании неона при охлаждении смеси жидким водородом. [c.495]

    Побочными продуктами гидроочистки являются газ, отгон и сероводород. Газ состоит из метана, этана, незначительных количеств пропана, бутана и водорода и используется как топливо. [c.222]

    Образоваиие изопентана в качестве побочного продукта в реакции этилирования изобутана может быть объяснено проходящей по аналогичной же схеме реакцией деструктивного алкилирования изобутана 2,3-диметилбутаном i. 2,3-диметилбутил-катион, являющийся промежуточным соединением в реакции алкилирования, может терять протон (вместО отрыва иона водорода) с образованием в качестве главного продукта [c.318]

    Методам, основанным на концепции получения водорода путем проведения реакций взаимодействия горючих веществ (природный газ, другие газообразные и жидкие углеводороды, кокс и т. п.) с водяным паром, в настоящее время отдается почти исключительное предпочтение. Термохимические и термодинамические расчеты позволяют определить минимальный (теоретический) расход топлива и максимальный выход продукта. В выборе одного из рассмотренных методов решающее значение имеет экономический расчет. Особенно заслуживает внимания метод 7 ввиду одновременного получения ценного побочного продукта — ацетилена. Ацетилен образуется как лабильный продукт одной из нескольких реакций, происходящих одновременно, и его удается выделить благодаря быстрому охлаждению системы. В этом случае предварительный анализ не дает результата, поскольку ни стехиометрический, ни термодинамический расчеты не позволяют определить выход ацетилена, который зависит главным образом от кинетических условий проведения реакции (например, формы реакционного пространства, скоростей потоков, скорости нагревания и охлаждения газовой смеси и т. п.). Для оценки концепции обязательно нужно провести исследования в промышленном масштабе. [c.61]

    Решение. Из рис. У1-9 следует, что снижение давления, согласно принципу Ле Шателье, сдвигает равновесие реакций вправо (выделение водорода) процесс при этом проходит при более низкой температуре. Выбор оптимальных условий зависит от того, какой из продуктов будет целевым, нужно ли уменьшить содержание побочного продукта до минимума (например, иногда побочный продукт используется в другом синтезе), можно ли применить рециркуляцию, необходимо ли добиться определенной скорости реакции (кинетический фактор). Приняв, что реакция проходит достаточно быстро, рассмотрим указанные в условиях примера случаи. [c.179]

    Прямое хлорирование метана экономически выгодно, если имеется применение для получающегося в качестве побочного продукта хлористого водорода. Если хлористый водород не находит применения, его можно использовать как источник хлора при термическом хлорировании в присутствии воздуха или кислорода [26]  [c.57]

    Глицерин получают из пропилена и кислорода, при этом в качестве побочного продукта образуется ацетон. Процесс проходит в несколько стадий. Пропилен окисляют до акролеина при температуре 300—400 °С и давлении от 1 до 10 ат на катализаторе— закиси меди, нанесенной на 81С. Одновременно получают изопро-панол путем гидратации пропилена серной кислотой. Акролеин и. изопропанол образуют аллиловый спирт в присутствии катализатора из необожженной MgO, смешанной с 2пО, при температуре 400°С. Наконец, при реакции аллилового спирта с водой получают глицерин. Катализатором этой реакции является 0,2%-ный раствор первольфрамовой кислоты в 2 М водном растворе перекиси водорода. Температура процесса 60—71 °С, время контактирования 2ч. [c.332]

    Индийские исследователи изучали кинетику реакции в присутствии безводного хлористого водорода и различных промоторов (этил-, бутил- и гексилмеркаптана, а также тиогликолевой кислоты). По ходу процесса определяли концентрации ацетона и дифенилолпропана, а количество фенола рассчитывали по количеству дифенилолпропана, считая, что фенол реагирует с ацетоном точно по стехиометрическому соотношению и не расходуется на образование побочных продуктов. Авторы, предположив, что реакция образования дифенилолпропана подчиняется уравнению второго порядка [c.86]

    В соответствии с механизмом, принятым для образования дифенилолпропана, можно легко объяснить и появление побочных продуктов. Так, реакция образования орто-пара-изомера дифенилолпропана представляется следующей. При действии карбкатиона ацетона замещается атом водорода в феноле, находящийся в орто-положении к гидроксильной группе. Образовавшийся через стадию ст-комплекса VI нестабильный третичный карбинол УП, отщепляя гидроксил, дает катион о-изопропенилфенола VHI. Этот катион реагирует со второй молекулой фенола и дает промежуточный продукт IX, который стабилизуется с образованием орто-пара-изомера дифенилолпропана X  [c.90]

    Образование орто-пара-изомера дифенилолпропана можно также представить путем замещения водорода, находящегося в ортоположении к гидроксильной группе в молекуле фенола, катионом п-изопропенилфенола IV. Содержание этого изомера в побочных продуктах колеблется в зависимости от условий реакции и в некоторых случаях превышает 50%. При изучении равновесия между дифенилолпропаном и его орто-пара-изомером было найдено , что первоначально в реакционной массе содержание орто-пара-изоме-ра выше. При выдерживании смеси при этой же температуре его концентрация снижается, в то время как количество дифенилолпропана увеличивается. По-видимому, дифенилолпропан отличается большей стабильностью. Реакция идет с одновременным образованием обоих изомеров, а затем часть орто-пара-изомера превращается в дифенилолпропан до наступления равновесия. Вывод относительно одновременного образования этих двух изомеров согласуется с приведенной выше схемой их образования. [c.91]

    Заметное влияние оказывает, мольное отношение фенол ацетон на выход побочных продуктов. В опытах с хлористым водородом, когда полученный дифенилолпропан анализировали затем методом бумажной хроматографии, было установлено , что Н и соотношении 2,5 1 содержание побочных продуктов составляет 15,3%, причем в их состав входит 12 различных компонентов при 3 1 эта величина снижается до 12,5% при 4 1 — до 2,5—4,4%, а при 8 1 составляет лишь 0,85%. При соотношении 8 1 было найдено всего три примеси орто-пара-изомер дифенилолпропана, соединение Дианина и фенол. Однако необходимо учитывать, что с увеличением этого [c.121]

    Полученные продукты направляются в систему разделения, осуществляемого ректификацией. На первой колонне 4 отделяется легкая фракция, состоящая из метилмеркаптана, хлористого водорода, воды и части фенола. С низа колонны выводится дифенилолпропан, побочные продукты и фенол. Эта смесь подогревается в теплообменнике и подается в колонну 6 для отгонки фенола. Пары фенола, вы- [c.137]

    Непременным условием научно-технического прогресса является комплексное использование сырьевых ресурсрв. Одной из важных народнохозяйственных проблем является утилизация хлористого водорода - побочного продукта многих производств. При получении хлор- и фторсодержащих растворителей и мономеров, фреонов, пестицидов, при хлорировании парафиновых и ароматических углеводородов, первичных и вторичных спиртов, кетонов и кислот более половины используемого хлора расходуется на образование хлористого водорода. Значительное его количество образуется также при гидролизе неорганических хлоридов, например, при переработке хлорида магния в оксид, в производстве аэросила из тетрахлорида кремния и т. п. В то же время большие количества хлора используются для производства синтетического хлористого водорода, технической и реактивной соляной кислоты. Поэтому рациональное получение и последующая переработка побочно образующегося хлористого водорода имеет не только экономическое значение, но позволяет также предотвратить загрязнение окружающей среды. [c.4]

    При электролизе раствора Na l получаются в эквивалентных количествах три продукта хлор и менее дефицитные щелочь и водород. Это заставляет изыскивать, такие способы производства, в которых получался бы только хлор (при низком удельном расходе электроэнергии). Среди таких способов наиболее интересны процессы, позволяющие утилизировать абгазный хлористый водород—побочный продукт при получении ряда хлорпроиз-водных веществ. [c.83]

    Германий получают из побочных продуктов переработки руд цвет-HI.IX металлов, а также выделяют из золы, полученной от сжигания некоторых видов угля, из отходов коксохимического производства. Рядом последовательных операций соединения Ое переводят в 0е02, который затем восстанавливают водородом. Дополнительно очищают германий зонной плавкой. Основная масса Ое расходуется в полупроводниковой технике. [c.424]

    Ориентировочные расчеты себестоимости водорода — побочного продукта окнс.тгенпя фосфора водой показа.лн, что водород, получаемый конверсией природного газа, в отечественных условиях на 10— 15% дешевле водорода, образующегося из воды при окислении фосфора. [c.260]

    Окисление этилбензола в ацетофенон протекает при 125° и 2 ат. Превращение этилбензола за один цикл составляет 25—30%. Реакция экзотермическая. Сырые продукты реакции, состоящие примерно из 73% этилбензола,. 17% ацетофеноиа, 8% метилфенплкарбинола и 2% побочных продуктов, разделяют разгонкой. Полученную таким образом смесь, состоящую из 68% ацетофенона и 32% метилфенолкарбииола, гидрируют при 14 ат водорода и 130—170° над медно-хромо-железным катализатором. При гидрировании получается практически чистый метилфенилкарбинол. Дегидратация его в стирол производится над нанесенной на боксит окисью титана, в отсутствие давления при 250°. [c.236]

    В аппарат длиной 1,8 ж и внутренним диаметром 200 мм, в который жестко вмонтирована ртутная лампа, подается охлажденная до —20° жидкая смесь (200 кг/час изобутапа п 25 кг/час хлора). В аппарате поддерживают давление около 15 ат, благодаря чему смесь находится в жидком состоянии, а хлористый водород остается в растворе. Во время реакции температура повышается до +40°. С конца аппарата отводится 25 кг нас реакционной смеси, которую перегонкой под давлением разделяют иа хлористый водород и углеводород, с одной стороны, и хлористый нзобутил или т/зет-хлористый бутил, с другой стороны. Хлористый водород и изобутан разделяют далее перегонкой под давлением изобутан снова возвращают в процесс. При подаче 21 кг1час изобутапа получают около 31,3 кг1час смеси хлористых изобутилов, что соответствует выходу 98%. В качестве побочного продукта образуется [c.145]

    Превращенпе трихлорэтилена в перхлорэтилен целесообразно только в тех случаях, когда трнхлорэтилеп нельзя использовать как таковой. Методы, основанные на ацетилене и других углеводородах как исходных веществах, всегда дают хлористый водород в качестве побочного продукта. Такие процессы проводятся иногда в несколько стадий II при повышенных телшературах. Выход хлористого водорода повышается прп применения в качестве сырья ацетилена, поэтому рентабельность процесса зависит от использования хлористого водорода. Это осуществляют получением из НС1 хлора по методу Dea on . [c.208]

    Двуокись углерода вымывается водой в скруббере под давлением 10—30 ат (см. стр. 353), а водород направляется в установку синтеза аммиака. Вода, отходящая из скруббера, расширяется, выделяя СО2 (побочный продукт), который можно использовать в производстве мочевины — ценного искусственного удобрения. Реакцию синтеза мочевины из аммиака и двуокиси углерода (через карбамат аммония NH4 02NH2) можно описать суммарным уравнением  [c.379]

    С. Декарбонилирование. В некоторых случаях необходимо удаление ил промежуточного продукта и процессе ароматизации функциональной группы такой, как альдегидная (—СНО) или спиртовая (—СНаОН). Образование бензола при пропускании бензилового спирта над нагретым никелевым катализатором известно давно [27] изучалось также разложение неароматических спиртов [1] и альдегидов [32] в углеводороды путем отщепления водорода, либо окиси углерода, либо того и другого. Если разлагаемый промежуточный продукт является циклогексильным или циклогексенильным производным, как непредельный альдегид, полученный в реакции Ди-пьса-Лльдера, то декарбоксилирование сопровождается, по-видимому, дегидрогенизацией с образованием аромч-тического углеводорода в одну стадию. Сырой продукт может содержать некоторое количество побочных продуктов, включая циклоолефины, которые повышают содержание ароматического углеводорода при его рециркуляции над дегидрирующим катализатором. [c.489]

    Образование наряду с изомерами гексана побочных продуктов, особенно изобутана, изопоитак и парафинов, кипящих выше гексанов, наблюдалось во всех работах первых. исследователей. Позже стало известно, что эти реакции можно эффективно регулировать, применяя определенные добавки или ингибиторы [21]. Желаемое действие оказывают водород, ароматические и циклопарафиновые углеводороды. [c.30]

    Иногда путем гидрогенизации возможно разделять сложные близкокипящие углеводородные смеси, так как гидрированные компоненты значительно отличаются по своим свойствам от негидрированных, чем и пользуются для разделения их при помощи физических или химических методов. Цапример, антраценовую лепешку (побочный продукт, выделяемый из каменноугольной смолы, содержащий антрацен, фенантрен, карбазол и другие полициклические углеводороды) можно так прогидри-ровать, что прогидрируется только антрацен. Продукт гидрогенизации антрацена 9,10-дигидроантрацен можно выделить из смсси перегонкой либо избирательной экстракцией. Подходящими условиями для этого процесса являются температура 300°, давление водорода 42 ат, катализатор сульфид никеля или сульфид молибдена [30]. [c.243]

    Циклопентан. Циклопентан подвергается гидрогенолизу в пентан над платиной при 300° в присутствии водорода с образованием небольших количеств побочного продукта [70, 85, 169, 170]. В присутствии двуокиси углерода циклонентановое кольцо не разрушается. Относительная легкость, с какой циклопентан подвергается гидрогенолизу, не может быть [c.255]

    Важно то, что 2,2,4-триметилпентан не подвергался воздействию-деструктивного алкилирования изобутаном в присутствии /ге ето-бутилфто-рида и фтористого бора [44]. Этим объясняются относительно высокие выходы октана, получающегося в качестве побочного продукта, а также дается ответ на возражения [31] против цепного механизма алкилирования. Относительная трудность отрыва иона водорода от 2,2,4-триметил-пентана не имеет никакого отношения к поведению соответствующего т/)е и-октил-иона, образующегося различными путями. Причина неактив-ности третичного водородного атома в 2,2,4-триметилпентане неясна. Возможно, что это обусловлено соседством неопентильной группы. [c.319]

Рис. 1.21. Зависимость константы скорости образования 2,2-диметилбутана (I) VI выхода побочных продуктов (2) от парциального давления водорода при изомеризации м-гексана Рис. 1.21. <a href="/info/366508">Зависимость константы скорости</a> образования 2,2-диметилбутана (I) VI <a href="/info/1104422">выхода побочных</a> продуктов (2) от <a href="/info/1044919">парциального давления водорода</a> при изомеризации м-гексана
    Возможность образования соединения Дианина из 2,2,4-трп-метилхромена-3 и фенола была подтверждена авторами при проведении прямого синтеза дифенилолпропана в присутствии безводного хлористого водорода. Таким образом, если реакция проходит по этой схеме, то в побочных продуктах можно обнаружить и 2,2,4-триметилхромен-3. Что же касается соединения Дианина, оно всегда присутствует в неочищенном дифенилолпропане. [c.73]

    Так, по способу фирмы Hooker hemi al " после разделения реакционной массы дистилляцией подвергают обработке ту часть побочных продуктов, которая отгоняется вместе с дифенилолпропаном (соединение Дианина, орто-орто- и орто-пара-изомеры дифенилолпропана) и отделяется затем от него экстракцией органическим растворителем. Остаток после отгонки растворителя смешивают с фенолом в другом аппарате и через смесь при 50 °С пропускают газообразный хлористый водород. Предполагается, что при этом соединение Дианина превращается в указанные изомеры дифенилолпропана. Затем все эти изомеры полностью или частично изомеризуются в дифенилолпропан. Из полученной массы дифенилолпропан можно выделить известными методами (дистилляцией, в виде его аддукта с фенолом и др.). Однако чтобы не усложнять технологическую схему, рекомендуется просто добавлять полученную массу к исходному сырью, поступающему на синтез в основной реактор. Условия в основном реакторе синтеза и в реакторе для обработки побочных продуктов отличаются только тем, что во второй из них не подают ацетон. Для увеличения времени пребывания побочных продуктов в зоне реакции несколько аппаратов соединяют последовательно. [c.177]


Смотреть страницы где упоминается термин Водород побочный продукт: [c.195]    [c.50]    [c.435]    [c.452]    [c.520]    [c.97]    [c.99]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Побочные



© 2024 chem21.info Реклама на сайте