Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография газовая капиллярная нанесение

    В заключение остановимся кратко на течении подвижной фазы в тонкослойной хроматографии. Пластину с нанесенным на ее поверхность слоем сорбента опускают одним концом в ванночку с растворителем и помещают в камеру, насыщенную его парами. Движение подвижной фазы по слою осуществляется за счет капиллярных сил, аналитик обычно не регулирует этот поток. Известно, что жидкость в капилляре образует мениск, причем возникает разность давления АР в жидкой и газовой фазе, равная [14] [c.28]


    В газовой хроматографии подвижной фазой является газ-носитель, неподвижной фазой — адсорбент, твердое вещество или жидкость, нанесенная гонким слоем на гранулированный инертный материал-носитель или на стенку капиллярной колонки. [c.368]

    В качестве неподвижной фазы в газовой хроматографии используют практически нелетучую при температуре колонки жидкость, нанесенную на твердый носитель и растворяющую компоненты анализируемой смеси. Количество граммов неподвижной жидкости, приходящееся на 100 г твердого носителя, называют степенью пропитки (в вес. %). Твердым носителем служит практически инертное твердое вещество (обычно измельченный кирпич, целит и т. п.), на которое наносят жидкую фазу. В капиллярных колонках твердым носителем являются внутренние стенки капилляров. [c.27]

    В этом хроматографическом методе роль колонок выполняют полые капиллярные трубки, на внутреннюю поверхность которых нанесен тонкий слой жидкости. Их использование началось с капиллярной газовой хроматографии (ГЖХ). Но хрупкость стекла, из которого изготавливались капиллярные колонки для ГЖХ, отпугивала многих потенциальных пользователей. В настоящее время мы располагаем гибкими капиллярами из кварцевого стекла с полимерным покрытием, изготавливаемыми по технологии, принятой в производстве оптических [c.242]

    Газовая хроматография представляет собой процесс, в котором разделение смеси производится с помощью подвижной газовой фазы, проходящей над сорбентом. Метод подобен широко применяемой жидкостной распределительной колоночной хроматографии, за исключением того, что подвижная жидкая фаза заменена движущейся газовой фазой. Газовая хроматография (ГХ) подразделяется на газо-адсорбционную хроматографию (ГАХ), где сорбентом является твердое тело с большой поверхностью, и газожидкостную хроматографию (ГЖХ), где сорбент — нелетучая жидкость, нанесенная на инертный твердый носитель. Подвижная фаза, или газ-носитель, представляет собой инертный газ, который пропускается с постоянной скоростью через насадочную колонку — трубку небольшого диаметра, содержащую сорбент. Аналитическая к олонка длиной около 1,5 ле и внутренним диаметром 4 мм может иметь эквивалент от 700 до 4000 теоретических тарелок (смотри ниже) в зависимости от типа и равномерности заполнения насадки. То, что говорится о газо-жидкостной хроматографии, об ее аппаратуре, детекторах, взятии пробы газа и т. д., в основном применимо к газо-адсорбционной хроматографии, которая является исторически более ранним методом и применяется преимущественно в случае анализа газов или относительно неполярных веществ с высокой летучестью. Область применения газо-жидкостной хроматографии значительно шире, так как этот метод применим к более широкому многообразию веществ и вместе с тем допускает применение не только насадочных, но и капиллярных колонок. В этой главе рассматривается только газо-жидкостная хроматография. [c.43]


    Вместе с тем, ГАХ не должна рассматриваться как замена газожидкостного метода, потому что открытые капиллярные колонны с нанесенной на стенки пленкой жидкости обладают исключительно высокой эффективностью. Оба эти метода должны дополнять друг друга. Кроме того, в последнее время все большее применение находит комбинация этих методов в виде так называемой газовой адсорбционно-абсорбционной хроматографии. Следует, однако, отметить, что в настоящее время многие традиционные для ГЖХ жидкие фазы химически прививают к поверхности стенок капиллярных колонн и носителей в набивных колоннах. [c.11]

    Особое значение для капиллярной газовой хроматографии приобрели различные виды модифицированных капиллярных колонок. Среди них различают такие, у которых эффект разделения осуществляется за счет адсорбции на химически обработанной внутренней поверхности трубки, и такие, где химическое модифицирование внутренней поверхности лишь создает лучшие условия для образования равномерной жидкой пленки в импрег-нированных капиллярных колонках. Модифицирование в целях лучшего прилипания неподвижной фазы может быть проведено путем образования промежуточного слоя в виде пленки из лака или смолы. Кроме того, возможно нанесение пылеобразного адсорбента или тонкого слоя твердого носителя на стенки капиллярных колонок. На модифицированных капиллярных колонках может быть осуществлена как газоадсорбционная хроматография, так и газо-жидкостная хроматография на полярных неподвижных фазах. [c.322]

    Чрезвычайно эффективное разделеюю обеспечивает газовая хроматография, где иь ет место распределение газообразных компонентов, наприм между газом и жедкой фазой, нанесенной иа твердую подложку (например, капилляры со специальным покрытием на стенках в капиллярной газовой хроматографии fflли специальный набивочный материал в газовой хроматографки с наивными колонками). [c.192]

    В газовой хроматографии применяют все три типа существующих колонок насадочные (диаметр 3—5 мм), микронасадочные (диаметр- 0,8—1,5 мм) и полые капиллярные (диаметром 0,1 — 0,8 мм) [1]. Насадочные колонки заполняют частицами сорбента (насадка) диаметром 0,1—0,5 мм. Принято считать, что достаточно однородный поток образуется, если соотношение диаметра колонки к диаметру частиц йр не менее 8. В газовой хроматографии реализуются процессы адсорбции и растворения, в связи с этим насадки представляют собой либо частицы адсорбента, либр частицы сорбента (носитель с нанесенной на него пленкой неподвижной фазы, в которой происходит растворение). В некоторых случаях происходят промежуточные смешанные процессы. Упрощенная схема колонки приведена на рис. 11.1. [c.89]

    На внутренней поверхности капиллярных колонок этого типа находится пористый слой. Колонки ОКК-ПС (PLOT) используются в адсорбционной газовой хроматографии, а колонки ОКК-ТН (S OT), в которых на пористый слой нанесена неподвижная фаза, — в разделительной газовой хроматографии. Если пористый слой, несущий неподвижную фазу, получен не нанесением на стенки капилляра какого-то вещества из его суспензии, а другим способом, то такие колонки называются смоченными открытыми капиллярными колонками (смоченными PLOT). [c.102]

    Колонки ДЛЯ газовой хроматографии могут быть капиллярными и наполненными . Капиллярные колонки представляют собой длинные тонкие трубки, содержащие только одну неподвижную фазу. Наполненные колонки имеют больший диаметр. Их заполняют сорбентом, полученным путем нанесения неподвижной фазы на инертный твердый носитель (например, измельченный огнеупорный кирпич). Аналитические колонки могут иметь длину от 10—15 см до 1—2 км. Наиболее часто применяют колонки длиной от 1,5 до 3—4 м. Для проведения препаративного разделения во избежание чрезмерно больших значений времени удерживания обычно предпочитают колонки умеренной длины (1,5—3,5 м). Хотя существуют приборы, на которых можно работать с колонками очень большого диаметра, обычно удобнее применять для препаративного разделения приборы, снабженные детектором по теплопроводности и имеющие колонки диаметром от 6 до 9 мм. Такие колонки достаточно удобны как для аналитической, так и для препаративной работы. В том случае, если газовый хроматограф имеет детектор, разрушающий пробу (например, пламенноионизационный), то в систему коммуникаций прибора включают делители потока, направляющие меньшую часть пробы к детектору, а остальное — в систему сбора выделенных фракций. [c.458]

    В газовой хроматографии на открытых капиллярных ко лонках внутренние стенки колонок перед нанесением непод вижной фазы подвергают щелочной обработке или травлений Так, авторы работы [25] обрабатывали капилляр из мягкоп стекла 2,5 н раствором гидроксида натрия в течение 2 - 8 при 100°С Полученную таким образом колонку использовал) для разделения сильных производных аминокислот Оптималь ные условия предварительной обработки колонок такого тиЛ подробно изучены Исии и сотр [45] [c.66]


    Все рассмотренные выше работы были выполнены с обычными набивными аналитическими колонками. Целесообразно также применение химических реакций. Б капиллярной хроматографии, особенно в тех случаях, когда исследуются сложные смеси (и, следовательно, возможно наложение зон образовавшихся продуктов) или образовавшийся спектр продуктов является сложным, X. Г. Штруп-пе [24] использовал реакционную газовую хроматографию совместно с капиллярной хроматографией. В качестве реактора служила алюминиевая капиллярная трубка (600x0,03 см), внутренние стенки которой были покрыты тонким слоем платины. Для нанесения катализатора на внутренние стенки капиллярного реактора использова лась обычная методика нанесения неподвижной жидкой фазы на капиллярную колонку капилляр заполняли эфирным раствором платинохлористоводородной кислоты, перемещая его в течение 15 мин. из одного конца трубки в другой. Затем реактор нагревали при 150° С в токе водорода, при этом платинохлористоводородную кислоту восстанавливали до платины. Процесс гидрирования проводили в потоке водорода при 125° С. Метод был проверен на анализе искусственных смесей углеводородов с т. кип. до 85°С. Показано, что MOHO-,ди- и циклоолефины быстро присоединяют водород по двойным связям, причем углеродная структура ароматических, нафтеновых и [c.62]

    Изотопы и изомеры водорода. Одним из преимуществ газовой хроматографии является возможность определения наиболее легких из встречающихся в природе веществ — изотопов и спиновых изомеров водорода. Смесь из Н2, HD и D2 разделяли на колонке с активированной окисью алюминия (адсорбент обрабатывали [12] раствором Fe l3 в соляной кислоте, нагревали и нейтрализовали гидроокисью аммония, либо активировали [13] при 450 °С в течение недели в потоке гелия при —196 °С). Глюкауф и Кит [14, 15] для разделения водорода и дейтерия, а также водорода, дейтерия и трития использовали колонку длиной 44 см с нанесенной на асбест палладиевой чернью. Имеются и другие работы, посвященные разделению изотопов водорода на колонках с молекулярными ситами и окисью алюминия при низких температурах [11, 16—19]. Разделение смеся дейтероводорода и спиновых изомеров водорода и дейтерия осуществили Монке и Зафферт [20]. Они использовали стеклянную капиллярную колонку с внутренним диаметром 0,27 мм, которую обрабатывали водным раствором аммиака и кондиционировали при 170 °С в течение 70 ч. Длина колонки 80 м, температура разделения —196 °С, расход газа-носителя (неона) 2 мл/мин, детектор — микрокатаро-метр. Полученная хроматограмма приведена на рис. VI, . Аналогичную смесь разделяли на колонке со стеклянными микросферами [21]. [c.229]

    Метод тонкослойной хроматографии (ТСХ) основан на разделении веществ в зависимости от их различной адсорбционной способности. Разделение проводят в тонком слое сорбента, нанесенном на специальную пластинку. Распределение вещества на пластинке происходит с помощью растворителя. Тонкий слой сорбента является неподвижной фазой, растворитель — подвижной фазой. Анализируемую пробу наносят на стартовую линию пластинки с помощью микрошприца или микропипетки. Пластинку помещают в камеру, содержащую растворитель, который перемещается по слою адсорбента под действием капиллярных сил. Камера представляет собой сосуд, размеры которого несколько больше размеров пластинки. Камера должна быть плотно закрыта, чтобы растворитель не испарялся и газовая атмосфера в камере была постоянной. Компоненты анализируемой смеси перемещаются по слою вместе с растворителем с различными скоростями. Когда растворитель достигает противоположного конца пластин, разделение заканчивают, удаляют пластинку из камеры и испаряют растворитель. Анализируемые вещё -ства проявляются на хроматограмме в виде зон или пятен Кибардин С. А., Макаров К. А., 1978 Во1И ег И. К. е а1., 1965]. [c.55]

    Blomberg L. - hromatographia,1975,5,К7,324-326 РЖХим,1976,151702. Однородность пленок неподвижной фазы, нанесенных динамическим методом, в стеклянных капиллярных колонках для газовой хроматографии. [c.54]

    Srinivas S.E. - Пат.США 3831555,заявл.7.03.72,опубл.27.08.74 РЖХим,1975, I2ff 8n. Система для приготовления набивных колонок и капиллярных с нанесенным на внутреянш поверхность слоем, используемых в газовой хроматографии. [c.139]


Смотреть страницы где упоминается термин Хроматография газовая капиллярная нанесение: [c.41]    [c.18]    [c.18]    [c.51]    [c.93]    [c.54]    [c.58]    [c.401]    [c.322]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография хроматографы

Капиллярная

Капиллярная хроматографи

Капиллярность

Хроматограф газовый

Хроматография газовая

Хроматография капиллярная



© 2025 chem21.info Реклама на сайте