Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активная поверхность насадок влияние

    Значительное влияние на оказывают форма и размер насадочных тел, а также способ их загрузки. С увеличением размера насадочных тел гр возрастает (в одной работе [156] наблюдалось уменьшение с увеличением размера колец). Поэтому активная поверхность для мелких насадок не на много выше, чем для крупных, несмотря на то, что геометрическая поверхность значительно возрастает с уменьшением размера насадки. Для регулярных насадок г 5 больше, чем для засыпанных внавал. Сравнение для бумажных и фарфоровых колец [157] показало, что материал насадки не оказывает существенного влияния. [c.368]


    Значительное влияние на ф оказывают форма и размер насадочных тел, а также способ их загрузки. С увеличением размера насадочных тел 4 возрастает (в одной работе [1261 наблюдалось уменьшение ф с увеличением размера колец). Поэтому активная поверхность для мелких насадок не на много выше, чем для крупных, несмотря на то, что геометрическая поверхность значительно возрастает с уменьшением размера насадки. Для регулярных насадок 1 ) больше, чем для засыпанных внавал. Сравнение ДЛЯ [c.441]

    Высота слоя насадки по данным ряда исследований не оказывает заметного влияния на По Майо с сотр. [126] 4 достигает максимального значения в верхней части насадки и затем уменьшается на расстоянии около 75 мм от верха, после чего сохраняет постоянное значение. Гриневич [130] на регулярных насадках получил, наоборот, увеличение по мере удаления от верха насадки это увеличение наблюдалось при высотах до 1,5 м, особенно при малых плотностях орошения и небольшом количестве точек орошения. Исследования [105], проведенные с насадкой высотой до 6 м, показали, что для регулярных насадок активная поверхность практически не зависит от Я для насадок внавал, особенно при небольшом количестве точек орошения, возрастает с увеличением высоты насадки. [c.442]

    Влияние числа точек подачи орошения. Как указывалось, одна из причин расхождения различных данных по смоченной и активной поверхности состоит в том, что применялись различные способы подачи орошения на насадку. Этим же объясняются расхождения в опытах по массопередаче (стр. 460). Хорошо известно, что работа насадочных абсорберов в большой степени зависит от устройства оросителей и во многих случаях низкие показатели [c.449]

    Влияние п на активную поверхность можно определить из опытов по массопередаче. Жаворонков, Рамм, Гильденблат и др. [105, 1551 исследовали абсорбцию NHg в колонне диаметром 500 мм с насадками из колец размером 25—100 мм и с оросительными устройствами, дающими различное число точек орошения. Высоту насадки доводили до 6 л<. Опыты показали, что увеличение п вначале приводит к значительному повышению коэффициента массопередачи, а затем повышение замедляется и, наконец, практически прекращается. Исходя из этого, было принято, что коэффициенты массопередачи, полученные при максимальном в данных опытах значении п=560, соответствуют бесконечно большому числу точек орошения. [c.450]

    Удерживающая способность по дисперсной фазе. Объем дисперсной фазы, удерживаемой в насадочной колонне, условно делят яа несколько частей, определение которых возможно при использовании различных способов измерения УС. Если одновременно прекратить подачу жидкостей в колонну и измерить объем отстоявшейся дисперсной фазы, получают так называемую нормальную , или свободную, УС, которая определяется как доля свободного объема насадки. Кроме того, существует еще добавочный объем дисперсной фазы (удерживаемый в насадке), который не осаждается из насадки и называется перманентной УС ° . С помощью измерений радиоактивности было показано, что объемы дисперсной фазы, соответствующие как перманентной, так и нормальной УС, во время работы колонны, по-видимому, находятся в движении, причем перманентная УС оказывает влияние на величину общей активной поверхности контакта фаз, хотя степень ее влияния количественно определить нельзя. Для УС насадочной колонны характерно наличие небольшого гистерезиса, т. е. величина УС зависит от того, увеличивается или уменьшается скорость движения дисперсной фазы перед замером УС. В литературе опубликованы лишь ограниченные сведения о величине общей УС [c.549]


    Влияние числа точек подачи орошения. Одна из причин расхождения различных данных по смоченной и активной поверхностям состоит в том, что применялись различные способы подачи орошения на насадку. Хорошо известно, что работа насадочных абсорберов в большой [c.374]

    В рекомендованных уравнениях для расчета экстракционных аппаратов не отражено влияния межфазовой турбулентности и сопротивления на границе раздела фаз — явлений, которые в настоящее время еще не поддаются учету. Кроме того, рекомендуемые уравнения получены при помощи обработки результатов опытов, проведенных на бинарных системах, т. е. при растворении одной жидкости в другой, в которой первая частично растворима. Все количество дисперсной фазы, задерживаемое в колонне в этом случае, по-видимому, представляет собой активную УС, т. е. участвует в массопередаче. При наличии третьего (распределяемого) компонента некоторое количество капель непрерывно задерживается в насадке, причем в них быстро достигается состояние равновесия с окружающей жидкостью вследствие этого поверхность таких капель нельзя рассматривать как поверхность, участвующую в массопередаче. [c.558]

    Таким образом, по данным газо-жидкостной хроматографии представляется возможным рассчитывать коэффициенты активности компонентов в бесконечно разбавленных растворах. Это имеет очень важное практическое значение, поскольку эти величины весьма затруднительно определять другими методами. Нужно, однако, учитывать, что в изложенных выше рассуждениях рассматривается система газ — носитель — летучий компонент — неподвижная фаза, нанесенная на насадку, т. е. предполагается, что твердый носитель является инертным и не оказывает никакого влияния на фазовое равновесие в указанной системе. Как показывает практика, это условие не всегда выполняется. На поверхности носителя возможна адсорбция компонентов исследуемых смесей, оказывающая большое влияние на условия их равновесного распределения между газовой и неподвижной фазами. Это приводит к существенным отклонениям коэффициентов активностей летучих компонентов в бесконечно разбавленных растворах в малолетучих растворителях, найденных по данным газо-жидкостной хроматографии, от значений, определенных другими методами. Наибольшее влияние адсорбции на поверхности носителя обнаруживается при использовании для хроматографических экспериментов жидких фаз, полярность которых значительно меньше полярности исследуемых летучих веществ. Это влияние проявляется в асимметричности хроматографических пиков (появление адсорбционных хвостов ), а также в изменении удерживаемого объема с изменением величины вводимой пробы. Отмеченные явления обусловлены нелинейностью изотерм адсорбции на твердых поверхностях и обнаруживаются при использовании обычно применяемых носителей — кизельгура, огнеупорного кирпича, силикагеля, окиси алюминия, целита, пористого тефлона. [c.61]

    Результаты исследований влияния поверхности на механизм жидкофазного окисления бутана позволяют высказать некотор ые соображения о наиболее рациональном выборе материала и насадки реактора. Очевидно, что для получения высоких концентраций гидроперекисей в процессах аутоокисления следует применить поверхности, не активные в реакциях изомеризации и распада перекисных радикалов (стекло, ситаллы и др.), и наоборот — получению продуктов, образующихся непосредственно из перекисных радикалов (например, альдегидов), будет способствовать развитая металлическая поверхность. [c.416]

    Наиболее надежны по активной поверхности при абсорбции хорошо растворимых газов результаты, полученные методами 5 и 6. Из работ, выполненных этими методами, сомнительными представляются исследования Вейсмана и Бониллы (кривая ]0 на рис. 140), поскольку по их данным сильно возрастает с увеличением скорости газа, а влияние плотности орошения (при насадке кольцами) незначительно. Авторы опытов с кольцами не проводили, а обработали данные Теккера и Хоугена [145] по испарению воды с поверхности пористой насадки и данные Мак-Адамса [146] по испарению с орошаемой насадки. Мак-Адамс применял кольца из теплопроводного материала (угля), вследствие чего часть тепла передавалась путем теплопроводности через несмочен-ную поверхность насадки поэтому влияние плотности орошения на массоотдачу оказалось малым. Влияние скорости газа на массоотдачу в опытах Мак-Адамса, наоборот, завышено (показатель степени при скорости газа 0,9). [c.446]

    В настоящее время ведутся интенсивные исследования кинетики массопередачи в присутствии ПАВ [87, 88]. Однако механизм массопередачи с добавкой ПАВ еще недостаточно изучен. Считается, что адсорбированный слой ПАВ может оказывать различное влияние на кинетику массопередачи создавать дополнительное сопротивление массопередаче при равномерном распределении ПАВ по всей поверхности контакта или уменьшать, блокировать часть поверхности контакта фаз. Присутствие ПАВ неодинаковым образом влияет на интенсивность массопередачи в положительных и отрицательных смесях [84] и поэтому может различно влиять на скорость массопередачи разных компонентов. Так, при разделейии положительной смеси добавление ПАВ подавляет циркуляцию потоков в дисперсных системах и способствует образованию стабильной жидкостной пленки на поверхности насадки из-за уменьшения подвижности поверхности раздела фаз [77]. В отрицательных системах добавление ПАВ вызывает гидродинамическую неустойчивость поверхности контакта фаз и увеличивает интенсивность массопередачи [89]. Установлено, что интенсивность массопередачи в этом случае увеличивается тем больше, чем меньше длина цепи молекул поверхностно-активного вещества. [c.107]


    Эффективная поверхность насадки. Как было отмечено, в общем случае не вся поверхность насадки оказывается полностью смоченной и не вся смоченная (активная) поверхность оказывается одинаково эффективной. Кроме того, процессы массо-и теплопередачи, если не рассматривать так называемых концевых эффектов (в наднасадочном пространстве колонны и под насадкой), влияние которых обычно относительно мало [22], протекают пе только в текущей по насадке пленке, но и в каплях и брызгах, падающих в свободном пространстве насадки, а также (особенно для процессов, сопровождаемых химической реакцией) в большей или меньшей мере в застойных и медленно обновляе- [c.19]

    Различную эффективность сетчатых насадок, изготовленных из разных сплавов, Фухс [133] объясняет, основываясь на работах Форсайта с сотр. [134 ], неодинаковой смачиваемостью поверхности насадок и возможностью возникновения неодинаковых адсорбционных эффектов в зависимости от химической активности этих сплавов. Вольф и Гюнтер [135] разделяли эталонные смеси с различной полярностью веществ для определения влияния последней на эффективность насадок из различных металлов. В результате опытов было найдено, что в зависимости от материала насадки эффективность разделения изменяется на 10—12%. [c.415]

    Прямое фторирование углеводородов было освоено только после создания специальной аппаратуры и разработки особых приемов, позволивших преодолеть трудности, возникающ ие при этой реакции. Большой вклад в это дело внес американский химик Хемистон. Каталитический процесс. Оказалось, что интенсивность реакций фторирования можно снизить путем хорошего отвода тепла и разбавления смеси фторируемого органического вещества и элементарного фтора инертным газом, например азотом. Для отвода тепла в реакционное пространство вводится туго скрученная медная сетка выделяющееся тепло удаляется через стенки реактора, соприкасающиеся с сеткой. Таким образом удалось предотвратить сгорание органических веществ в свободном фторе. Дальнейшими исследованиями установлено, что природа металлической сетки (или насадки) оказывает заметное влияние на реакцию. Наиболее эффективными насадками при каталитическом фторировании являются медные стружки, покрытые различными металлами,— золотом, кобальтом, серебром, никелем или латунью покрытия из ртути, хрома, родия и железа менее пригодны. Эффект покрытия объясняется образованием на поверхности сетки высших фторидов металлов, которые и являются фторирующими агентами роль элементарного фтора при этом сводится, по-видимому, к регенерации фторидов металла. Таким образом, в процессе фторирования участвуют углеводород и высший фторид металла, являющийся менее активным фторирующим реагентом, чем фтор. Несмотря на жесткие условия, в присутствии насадок выход фторуглеродов повышается до 40—90%. [c.61]

    При малых временах контакта поверхностно-активное вещество не диффундирует к поверхности и не создает абсорбционного слоя. Значит, в системах с перемешиванием и быстрым обновлением поверхности на границе раздела фаз воздействие добавки поверхностно-активного вещества мало или вообще отсутствует (хотя Гудридж и Брикнелл [56] нашли, что значение существенно снижается при добавлении спиртов, имеющих молекулы с длинной цепью, когда происходит абсорбция газа в сосуде с высокой скоростью перемешивания). Благодаря очень небольшим концентрациям поверхностно-активных веществ улучшается смачивание и исключается образование ряби в колоннах с орошаемыми стенками и при пленочном течении по сферической насадке при этом сколько-нибудь значительный поверхностно-диффузионный барьер не возникает. В случае жидких струй и в малых по высоте колоннах с орошаемыми стенками поверхностно-активное вещество иногда накапливается в жидкости около ее выхода из колонны. Представляется маловероятным, чтобы добавки ПАВ оказывали влияние на скорость массообмена в насадочных газовых абсорберах, хотя и возникают проблемы, связанные с эмульгированием, при использовании насадочных колонн в качестве жидкостных экстракторов. [c.218]


Смотреть страницы где упоминается термин Активная поверхность насадок влияние: [c.59]    [c.163]    [c.582]    [c.320]    [c.97]   
Абсорбция газов (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Активная поверхность насадки

Влияние насадки

Влияние поверхности



© 2024 chem21.info Реклама на сайте